
Solving the Recognition Problem for Six Lines

Using the Dixon Resultant �

Robert H. Lewis1

Dept. of Mathematics, Fordham University, Bronx, NY 10458 USA

Peter F. Stiller2

Dept. of Mathematics, Texas A&M University, College Station, TX 77843-3368

Abstract

The “Six-Line Problem” arises in computer vision and in the automated analysis

of images. Given a three-dimensional object, one extracts geometric features (for

example six lines) and then, via techniques from algebraic geometry and geometric

invariant theory, produces a set of three-dimensional invariants that represents that

feature set. Suppose that later an object is encountered in an image. (For exam-

ple a photograph taken by a camera modeled by standard perspective projection,

i.e. a “pinhole” camera.) Suppose further that six lines are extracted from the ob-

ject appearing in the image. The problem is to decide if the object in the image

is the original 3D object. To answer this question two-dimensional invariants are

computed from the lines in the image. One can show that conditions for geometric

consistency between the three-dimensional object features and the two dimensional

image features can be expressed as a set of polynomial equations in the combined

set of two and three dimensional invariants. The object in the image is geometrically

consistent with the original object if the set of equations has a solution. One well

known method to attack such sets of equations is with resultants. Unfortunately,

the size and complexity of this problem made it appear overwhelming until recently.

This paper will describe a solution obtained using our own variant of the Cayley-

Dixon-Kapur-Saxena-Yang resultant. There is reason to suspect that the resultant

technique we employ here may solve other complex polynomial systems.

Preprint submitted to Elsevier Preprint 21 February 2001

1 Introduction

The Recognition Problem for Six Lines (Six Line Problem) arises in computer vision

and in the automated recognition of three-dimensional objects. From an object, six lines

are extracted, and from those six lines, nine three-dimensional (“3D”) invariants are

computed as a kind of signature. Later, a two-dimensional “snapshot” of some possibly

different object is obtained from an arbitrary perspective, and from this snapshot six lines

are extracted leading to the computation of four two-dimensional (“2D”) invariants. The

question is, is the snapshot a picture of the original object, i.e. a perspective projection

of the original six lines? We desire a method that can rapidly and reliably decide if a

given set of 2D data represents the same 3D object, or at least that a given 2D set can

not represent that object.

Using algebraic geometry, Stiller [5] showed that there should be a single equation re-

lating the nine 3D invariants to the four 2D invariants. He reduced the problem to a

system of 4 equations in 16 variables involving three additional variables (actually four,

but one may be set to 1). The resulting four polynomial equations di = 0, i = 1, . . . , 4 in

the three new variables are quartic and involve the 9 + 4 = 13 invariants as parameters

in the coefficients. The image is consistent with the original object if and only if the

four equations have a solution in the three variables (subject to a mild nondegeneracy

constraint). 3 Note that we do not need to know what the values of the three auxiliary

variables actually are, only that a solution exists. Image recognition questions of this

general type, but for points, were considered by L. Quan [4] and Stiller [6].

The solution of systems of polynomial equations is important in many fields of applied

mathematics. One of the classic methods of solving such systems is with resultants. In

general a resultant is a single polynomial derived from a system of polynomial equations

that encapsulates the solution (common zeroes) of the system. The Sylvester Determi-

� Expanded version of talks presented to the Maui IMACS meeting, July 1997, and the Prague

IMACS meeting, August 1998.
1 Partially supported by the Office of Naval Research
2 Partially supported by the Air Force Office of Scientific Research
3 We do not assume homogeneity. Thus, we expect n + 1 equations in n variables to, in

general, not be solvable. The resultant places a constraint on the 13 coefficient parameters

that characterizes solvability.

2

nant is the best known method of computing a resultant. However, it is not a realistic

tool for solving equations of more than one variable. Other methods exist, which usually

compute not the resultant itself but rather a multiple of it, containing extraneous fac-

tors. The standard Macaulay resultant yields no information for our problem since both

the numerator and denominator determinants are identically zero. Another resultant

method is that of Dixon (generalizing Cayley), recently extended by Kapur, Saxena,

and Yang [2]. The authors of that paper show that their method must work if a certain

condition holds. The condition is rather strong, and in our case it is not satisfied. Yet

we are able to make the method work anyway. This suggests to us that more theoretical

work should be done on the Dixon-Kapur-Saxena-Yang approach, and that probably our

approach here will succeed for many problems of interest.

2 The Basic Geometric Approach

The moduli space of equivalence classes of (semi-stable) six-tuples of lines in P3, projec-

tive 3-space, under the action of projective transformations (the matrix group PGL4,

4 × 4 matrices modulo scalars) is a rational variety of dimension 9. We can thus expect

to find 9 functions of the parameters defining the lines which are invariant, in the sense

that they provide coordinates on a Zariski open set of the moduli space. We explain

briefly how this is done. It is sufficient to work in a Zariski open subset of the set of

6-tuples of lines, so we will not hesitate to impose various general position assumptions

that will become apparent below.

Let 	1, 	2, 	3, 	4, 	5, and 	6 be six lines in space. We assume 	1, 	2, and 	3 are mutually skew

(our first general position assumption). Without loss of generality, we can complexify

and work in complex projective space P3. Since lines in P3 are parameterized by the

4 dimensional (complex) Grassmannian, G(2, 4), of two-planes through the origin in

(complex) four-space, an ordered six-tuple (1, . . . , 	6) of lines can be viewed as a point

in the 24 dimensional manifold X̂ = G(2, 4)×· · ·×G(2, 4). The group PGL4 of projective

linear transformations acts on P3 sending lines to lines and hence acts on X̂ sending a

6-tuple of lines to another 6-tuple. We are interested in the quotient X = X̂/PGL4 of

X̂ by this action. Since PGL4 is 15 dimensional, we expect X to have dimension 9. For

various technical reasons (in fact to get a good quotient space) we must limit ourselves to

an open dense subset, in fact a Zariski open subset, Û of X̂, and construct the quotient

3

U = Û/PGL4. For example, the requirement that 	1, 	2, and 	3 be mutually skew is one

of the conditions defining Û .

Now lines in projective space correspond to planes through the origin in 4-space, and two

skew lines correspond to two planes that intersect only in the origin. We can therefore

move 	1 to the z, w-plane and 	2 to the x, y-plane by a 4 by 4 invertible matrix. In this

position, 	1 corresponds to the z-axis in space and 	2 corresponds to a line at infinity

that meets both the x and y axes. Specifically the points (0 : 0 : 1 : 0) and (0 : 0 : 0 : 1)

will be on 	1 and likewise, 	2 will contain the points (1 : 0 : 0 : 0) and (0 : 1 : 0 : 0).

Having moved 	1 and 	2 to the above “canonical” positions, the 4×4 invertible matrices

that fix these two lines have the form:

M =



aa b
... 0 0

c d
... 0 0

. . .

0 0
... e f

0 0
... g h



, (1)

with ad− bc �= 0 and eh− gh �= 0.

Now 	3 is assumed to be skew to both 	1 and 	2. Suppose (m1 : n1 : r1 : s1) and

(m2 : n2 : r2 : s2) are two distinct points on 	3, which is then the line α(m1 : n1 :

r1 : s1) + β(m2 : n2 : r2 : s2) = (αm1 + βm2 : αn1 + βn2 : αr1 + βr2 : αs1 + βs2) as

(α : β) runs through all points in P1. If 	3 were to meet 	1, we would have αm1+βm2 = 0

and αn1 + βn2 = 0 for some non-trivial (α, β). This can happen if and only if det

(m1 m2
n1 n2) = 0. Thus 	3 being skew to 	1 means det (m1 m2

n1 n2) �= 0. Likewise 	3 skew to 	2

means det (r1 r2
s1 s2) �= 0.

We can choose (a b
c d) = (m1 m2

n1 n2)−1 and
(

e f
g h

)
= (r1 r2

s1 s2)−1 so that the 4 × 4 matrix (1)

above moves 	3 to the line through (1 : 0 : 1 : 0) and (0 : 1 : 0 : 1) without moving 	1 or

	2.

4

The set of 4 × 4 matrices fixing 	1, 	2, and 	3 consists of all matrices of the form



a b

c d

... ©

.

© ...
a b

c d



,

where ad− bc �= 0. In other words, we are reduced to finding invariants for an action of

PGL2 on the remaining three lines.

Assume now that 	4 is skew to 	1 and goes through the points (m̃1 : ñ1 : r̃1 : s̃1) and

(m̃2 : ñ2 : r̃2 : s̃2). Our group, PGL2, which fixes 	1, 	2, 	3, will act on 	4 as follows:



a b

c d

... ©

.

© ...
a b

c d





m̃1 m̃2

ñ1 m̃2

.

r̃1 r̃2

s̃1 s̃2



, det

a b

c d

 �= 0,

where we will have det
(

m̃1 m̃2
ñ1 ñ2

)
�= 0 (because 	4 is skew to 	1). Here the line is represented

by a 4× 2 matrix whose columns are the homogeneous coordinates of two points on the

line. Now without loss of generality, we can assume
(

m̃1 m̃2
ñ1 ñ2

)
= (1 0

0 1).

5

The action yields 

a b

c d

. . .a b

c d


r̃1 r̃2

s̃1 s̃2




which is a new line 	 going through the two points given by the columns of this 4 × 2

matrix.

Choosing two different points on 	 amounts to postmultiplying by an arbitrary invertible

2 by 2 matrix. We can choose (a b
c d)

−1
for this purpose. This means that 	 can be given

by 

1 0

0 1

.

N


where N is the 2 × 2 matrix

N =

a b

c d


r̃1 r̃2

s̃1 s̃2


a b

c d


−1

.

In other words, the orbit of 	 is just the orbit of N = (n11 n12
n21 n22) under conjugation.

The orbits with N a scalar matrix, N = (τ 0
0 τ), are just points, i.e. they are fixed points

of the action. The nature of the orbits with N not scalar depends on the Jordan form

of N . The possibilities are:

Case 1: (λ 1
0 λ). Here the orbit is two dimensional since the matrices which fix (λ 1

0 λ) under

conjugation

(
i.e. commute with (λ 1

0 λ)

)
are of the form (a b

0 a) a �= 0.

6

Case 2:
(

λ1 0
0 λ2

)
with λ1 �= λ2. Here the orbit is two dimensional since the matrices which

fix
(

λ1 0
0 λ2

)
under conjugation are of the form (a 0

0 d).

We will assume that 	4 is in case 2, which is the generic case. In other words, we will

assume that
(

r̃1 r̃2
s̃1 s̃2

)
has distinct (unequal) eigenvalues. Thus we can move 	4 to either

the line through (1 : 0 : λ1 : 0) and (0 : 1 : 0 : λ2) or the line through (1 : 0 : λ2 : 0)

and (0 : 1 : 0 : λ1). This ambiguity arises because Jordan form in this case isn’t unique!

It can be either
(

λ1 0
0 λ2

)
or

(
λ2 0
0 λ1

)
. Now fix 	4 to be one of these two lines. (It doesn’t

matter which. Moreover we will never in practice need to make a choice between the

two.)

The transformations that fix 	1, 	2, 	3 and 	4 take the form



a 0

0 d

... ©

.

© ...
a 0

0 d



modulo scalar matrices. Thus we have essentially reduced the group to C∗×C∗/C∗ ∼= C∗

where the C∗ in the quotient is embedded diagonally in C∗ × C∗. We say “essentially”,

because there is still a Z2-action lurking that switches
(

λ1 0
0 λ2

)
with

(
λ2 0
0 λ1

)
. This is

accounted for below.

If we assume, in addition to 	4, that 	5 and 	6 are skew to 	1, then we can reinterpret our

problem as one of finding invariants for the action of PGL2 on the three-fold product of

2 × 2 matrices by conjugation in each factor; specifically

(N4, N5, N6) −→ (AN4A
−1, AN5A

−1, AN6A
−1)

for A an invertible 2 × 2 matrix representing an element of PGL2. Here 	i, i = 4, 5, 6 is

7

the line passing through the points in P3 which are the columns of the 4 × 2 matrix

1 0

0 1

. . .

Ni


.

A known set of invariants are the traces of N1, N2, N3, N
2
1 , N

2
2 , N

2
3 , N1N2, N1N3, N2N3

and N1N2N3 which have one relation among them. We take a different approach. Since

we have assumed that N4 has distinct eigenvalues, we can find an A which conjugates

N4 to either
(

λ1 0
0 λ2

)
or

(
λ2 0
0 λ1

)
.

Consider the following subgroup G of PGL2:

G =


a 0

0 d

 a �= 0, d �= 0 or

0 b

c 0

 b �= 0, c �= 0

 mod scalars

Action by G leaves N4 in diagonal (Jordan) form. Thus we can reduce our action to one

of G acting on (C × C −∆)×N5 ×N6 where ∆ is the diagonal in C × C and where we

identify (λ1, λ2), λ1 �= λ2, in C × C − ∆ with
(

λ1 0
0 λ2

)
.

We now try to move 	5 to a canonical position using just the C∗ action of (a 0
0 d) mod

scalars. (This doesn’t depend on our choice for the position of 	4.) If we assume 	5 is

skew to 	1 so that it can be taken to go through the points (1 : 0 : n11 : n21) and

(0 : 1 : n12 : n22), then the group acts via



a 0

0 d

... ©

.

© ...
a 0

0 d





1 0

0 1

n11 n12

n21 n22


=



a 0

0 d

an11 an12

dn21 dn22



8

which is the same line as 

1 0

0 1

n11
a
d
n12

d
a
n21 n22


We will assume that 	5 is sufficiently generic so that n12 �= 0 and n21 �= 0. We can then

normalize (n11 n12
n21 n22) so that n12 = n21 = g �= 0, by choosing d

a
=

√
n12

n21
.

Note that 0 b

c 0


n11 n12

n21 n22


0 b

c 0


−1

=

 n22
b
c
n21

c
b
n12 n11


Thus if we normalize N5 to (n11 g

g n22), g �= 0, then the elements in the subgroup G

which preserve our “normal form”, namely that N4 be diagonal and that N5 have equal

off-diagonal elements (non-zero), form a subgroup H:

H =


a 0

0 a

 a �= 0

 ∪


a 0

0 −a

 a �= 0

 ∪


0 a

a 0

 a �= 0

 ∪


0 −a

a 0

 a �= 0


mod scalars. Clearly H < PGL2 is a finite group isomorphic to Z2 × Z2.

We are therefore reduced to the action of this finite group H on U = (C×C−∆)×(C2×
C∗) × C4 ⊂ C9 with coordinates (λ1, λ2, n11, n22, g, p11, p12, p21, p22) where 	6 is assumed

skew to 	1 so it can be represented by



1 0

0 1

p11 p12

p21 p22


.

Note that U ⊂ C9 is defined by g �= 0 and λ1 �= λ2, i.e. by g(λ1 − λ2) �= 0. Thus U is an

9

affine variety with coordinate ring

R = C

[
λ1, λ2,

1

λ1 − λ2

, n11, n22, g,
1

g
, p11, p12, p21, p22

]

and function field

F = C(λ1, λ,2 , n11, n22, g, p11, p12, p21, p22).

The desired quotient variety U/H is affine with coordinate ring given by the invariants

RH and function field given by the fixed field FH . One can show that this variety

is rational, i.e. FH is a field of rational functions in nine algebraically independent

quantities – the desired invariants.

To generate the desired equations one works with the 9 “invariants” λ1, λ2, n11, n22, g,

p11, p12,p21, and p22 (modulo the action of H ∼= Z/2Z × Z/2Z). In the plane one will

have 4 standard invariants q1, q2, q3, q4 which are rational expressions in the coefficients

of the 6 lines aix+ biy+ ci = 0 viewed in P2 as the points (ai : bi : ci) i = 1, . . . , 6. These

are q1 = q5,0

q5,2
, q2 = q5,1

q5,2
, q3 = q6,0

q6,2
, q4 = q6,1

q6,2
in the notation of [6].

Now one can use the above invariants, and the description of the relationship between 6

lines in 3D and 6 lines in 2D as a correspondence (in the sense of algebraic geometry),

to produce a system of 4 equations in 17 = 9 + 4 + 4 variables, nine 3D invariants, four

2D invariants, and four variables which represent an invertible 2 × 2 matrixa11 a12

a21 a22

 a11a22 − a21a12 �= 0

acting by conjugation as above on
λ1 0

0 λ2

 ,

n11 g

g n22

 ,

p11 p12

p21 p22


 .

The key result is that it can be shown that these 3D configurations for fixed λ1, λ2, . . . , p22

and variable aij sweep out a Zariski open set of the 3-dimension set of all possible 2D

equivalence classes obtainable by all possible perspective projections. The resulting four

equations appear in the appendix. Note they are linear in the 2D invariants, quadratic in

the 3D invariants and homogeneous quartic in the aij. By eliminating the aij one arrives

at the desired object/image equation. This is the problem we take up. One complication

10

is that the system always has degenerate solutions aij where a11a22 − a12a21 = 0. This is

what causes the classical Macaulay resultant to fail.

The reader may wonder about the fact that λ1, λ2, . . . , p22 aren’t quite invariant and

that a Z2 × Z2 action still lurks. This causes no serious problem. In fact a test of the

final single resultant equation relating λ1, . . . , p22, q1, . . . , q4 shows it to be invariant

under this action. For simplicity we stick with these “not quite invariant” invariants.

3 The Basic Computational Approach

We thus have:

• Nine 3D parameters: λ1, λ2, n11, n22, g, p11, p12, p21, p22.

• Four 2D parameters: q1, q2, q3, q4.

• Three (initially four) conversion variables: (a11 = 1), a12, a21, a22.

• Four quartic equations (see appendix) in the variables aij and the 13 parameters.

The four equations have the useful property that qi appears only in equation i, and only

with degree 1. It is therefore quite easy to solve for each qi in terms of the other variables.

While this is an unnatural thing to do from the standpoint of the Six Line Problem, we

will exploit it later to check answers.

The Cayley-Dixon method to eliminate the three variables aij may be summarized as

follows (see [2] for details):

• Adjoin three new auxiliary variables, r, s, t.

• Create the Dixon matrix, DM . Then compute the Dixon polynomial

dm =
Det(DM)

(r − a12)(s− a21)(t− a22)

• If desired, we may work with a certain “fixed object,” i.e. a set of numerical 3D

invariants. Stiller provided an algorithm for creating such test cases of 3D (and cor-

responding 2D) data sets. The data are integers or rational numbers. We may then

substitute into dm some or all of the nine 3D numerical values. This reduces the size

and complexity of dm.

11

• Create the second Dixon matrix by extracting coefficients from dm in a certain way.

These coefficients are polynomials in the four 2D parameters qi, i = 1, . . . , 4 and those

3D parameters that remain from the previous step. It is a 105 × 105 matrix.

• The determinant of this second matrix is the classical Dixon Resultant. If there is

a common solution of the original system of four equations, then this determinant

must be 0. Ideally that provides an equation that must be satisfied by the parameters.

However, in our case (and in many others) it is identically 0.

But that is not the end of the story. The Kapur-Saxena-Yang (“KSY”) method continues:

• Extract the non-zero rows and columns from the second matrix. This leaves a 51× 56

matrix. Call this the third matrix.

• If a certain condition holds on the third matrix, compute the determinant of any

maximal rank submatrix. These polynomials must vanish if the original system has a

solution.

In other words, these necessarily nonzero polynomials, any of which we will call ksy, play

the role of the classical Dixon Resultant. We will have more to say about the “certain

condition” in section five.

4 Phase One of the Computation

Unless some of the numerical 3D parameters from a “real” object are substituted into dm

before the creation of the second Dixon matrix, the polynomials ksy will be hopelessly

large for any existing computer system. In the first phase of the project, we substi-

tuted rational values for all nine 3D parameters, thus reducing the goal to computing a

resultant for that one object – a polynomial in the four 2D invariants q1, q2, q3, q4.

• Input the numerical (rational or integral) data for the nine 3D parameters. For example

λ1, λ2, . . . , p22 = 3, 4, 2, 3, 2, 3, 1, 2, 1/2.

• Compute ksy, a polynomial in the four parameters q1, q2, q3, q4.

• To determine if a set of 2D data q1, q2, q3, q4 “matches” the 3D object, substitute the

four numerical values into ksy and see if the result is 0. If it is not, the 2D set cannot

be a perspective projection of the 3D object.

12

An important simplification results by reconsidering what is meant by “the result is 0.”

Recall that the coefficients of the polynomial ksy are rational numbers. Since we seek

solutions of ksy = 0, we can clear out denominators and assume that all coefficients are

integers. Rather than work over the ring of integers, we can save enormously in both time

and space if we choose a moderately large prime number p at random and reduce all the

equations modulo this prime. We are then working over the field Zp, and it is sufficient

to test a candidate set of 2D parameters s1, s2, s3, s4 by reducing them modulo p and

checking ksy(s1, s2, s3, s4) = 0 in Zp. The resulting algorithm is probabalistic, with an

enormously high probability of success. An incorrect set of parameters will not pass the

test unless ksy(s1, s2, s3, s4) is a multiple of p, which is extremely unlikely. A correct set

of parameters will pass it unless one of the parameters is a fraction with denominator a

multiple of p. The probability of a mistaken judgment can be further reduced by simply

doing the algorithm twice with two different primes.

Lewis wrote programs to create the third matrix and compute ksy in his computer

algebra system Fermat [3]. One method is to compute the product of the pivot elements

that come up as one normalizes (say, into the Hermite form) the third matrix. One can

learn the rank of this matrix very easily by plugging in integers at random for the four

qi parameters and computing a matrix normal form. The matrix has rank 26. Therefore,

ksy is the product of 26 terms that will appear on the main diagonal as the matrix

is normalized. Depending on the algorithm, these terms may not be all polynomials.

Nevertheless, the product of all 26 will be a polynomial.

The row and column reductions went well, up to the 17th row/column. Beyond that

the complexity of the computation becomes overwhelming. However, it is not necessary

to continue the normalization algorithm. Recall that we have reason to think that any

maximal rank submatrix will do. By substituting random integers for three of the pa-

rameters qi it is easy to discover a 26 × 26 maximal rank submatrix. ksy is just the

determinant of this fourth matrix. Since all its entries are (4 variable) polynomials, the

determinant algorithm in Fermat (there are several) which works by recursive LaGrange

interpolation is suitable. It completed in three hours and produced a ksy with around

500,000 terms. (All times in this paper are for a 233mhz Macintosh with 604e chip.) It

had degree 26 or 25 in each of the four qi. As an ASCII file, this ksy occupied a file of

3.5 megabytes.

13

To evaluate ksy at 4 numerical values took about 2 seconds, so this is feasible in real

time. Extensive testing with 2D data sets, valid and invalid, verified the correctness of

ksy. This was all done using the prime 44449. Using 41999 produced essentially the same

results.

Wishing to look more closely at ksy, we returned to the idea of computing it by row

reductions on the third matrix, over the field Q, rather than Zp. The first nine diagonal

pivot elements were enlightening:

q4 − q2, q4 − q2, q4 − q2, q2(q4 + q2), q2(q4 + q2), (q3 + q1)(q4 − q2),

(q3 − q1)(q4 − q2), (q3 − 2q1)(q4 − q2), (q3 − 1/2q1 + 1/6)(q4 − q2)

This suggests, but does not prove, that ksy has many simple factors. After much testing

Lewis verified that

q4(q4 − q2)
4(q3 − q1)

4q2
2(q3 − 1/2q1 + 1/6) (2)

is a factor. One of the Fermat determinant algorithms can take advantage of a known

factor. It then computed the rest of ksy (the other factor) in only 25 minutes, down

from the original three hours. This “reduced ksy” has 100,000 terms and occupies only

670K of disk space. Numerical tests show that the actual resultant is indeed a factor of

the reduced ksy.

Even more extraneous factors can be removed from the reduced ksy. First, since the

resultant must be irreducible, we may divide out all the contents of ksy. Secondly, with

different maximal rank submatrices, simple variations of (1) divide their determinants

(and this remains true for different choices of 3D invariants, not just the values used here,

3, 4, 2, 3, 2, 3, 1, 2, 1/2). Thus, it is not hard to compute another reduced determinant

ksy′, and the true resultant should be a factor of GCD(ksy, ksy′). We have therefore

the following algorithm:

res := ksy;

REPEAT

Compute new reduced ksy using a new maximal rank submatrix;

ksy := ksy / all contents(ksy);

res := GCD(res, ksy)

UNTIL DONE

14

After five repetitions of this loop, the polynomial res contained only three hundred

terms! It was small enough to be factored with standard algorithms. The factor that

vanishes on a known 2D data set is:

sixline = q2
1q

2
4 − 2q1q

2
4 + 8q2

4 + 6q2q3q4 + 12q1q3q4 − 60q3q4 − 2q1q2q4 + 2q2
1q4+

28q1q4 − q2
2q

2
3 + 8q2

3 − 2q2
2q3 − 14q1q2q3 + 60q2q3 − 16q1q3 − 8q2

2 − 28q1q2 + 8q2
1

This was all done over a finite field, Zp. But the coefficients above are suggestively small

integers. Indeed, this is the actual resultant over Q, not just over Zp. That is easy to

prove: recall that each qi may be solved for in di = 0, then just substitute into sixline

each qi with its formula in terms of the other variables. The expression evaluates to 0.

It is as if we had set out to use the Chinese Remainder Theorem to find the resultant

over Q, and discovered that one prime was enough.

In summary, the polynomial sixline provides the solution to the problem for the given

particular 3D data set. If any set of 2D invariants be presented in the future, plug them

into sixline. If the result is not 0, then they do not represent a perspective projection of

the original object.

Now, our entire method, which we know has worked because sixline is verifiably correct, is

based on the Kapur-Saxena-Yang idea of computing the determinant of a maximal rank

submatrix. In [2] they show that the resultant must be a factor of any such determinant,

provided that a certain condition holds. This (sufficient) condition is that some column

in the 105 × 105 second matrix be linearly independent of all the others. However, in

our case the condition fails! Yet the method works anyway.

It may be asked why it was necessary to produce the polynomial sixline at all. Instead,

one could simply take a candidate set of 2D invariants and plug them into the third

matrix, whose rank is known to be 26. If the rank drops, which is surely a simple thing

to check, then the determinant of every maximal rank submatrix must vanish on that

2D set.

To answer, there are several reasons why the derivation of the polynomial sixline is very

desirable:

15

• It is not clear that the g.c.d. of all the maximal rank submatrices is exactly the

resultant. If it is not, there may be spurious zeros.

• The 2D invariants {q1, q2, q3, q4} will probably be obtained by extracting and measuring

lines on photographs. It is necessary to match the six 2D lines with the six lines on the

original 3D object. This will probably require testing all 6! = 720 possible permutations.

The time saved in plugging the {qi} into sixline versus finding the rank of the third

matrix may not be significant, but it will be multiplied by 720.

• We have been assuming that the 2D invariants are known exactly, but if they come

from measurements, there may be errors. Error analysis is much easier if it is based on

the polynomial sixline.

• In the next sections we generalize our method to produce a completely symbolic version

of sixline; i.e., we forgo plugging in numerical values for the nine 3D parameters, and all

13 variables appear in the resultant.

• It is possible to consider recognition of n lines by similar methods. However 6 is

the minimum for the problem to be meaningful; sets of 5 or fewer lines cannot be

distinguished in this manner.

5 Phase Two

In Phase One we substituted numerical values for all parameters except q1, q2, q3, q4.

Lewis then redid the computations keeping various other subsets of the parameters, such

as the four pij, the set {λ1, λ2, g, n11, n22}, and various combinations of the preceding with

some of the qi. In this way we learned the degree of the resultant in all of its parameters.

Each degree is either 1 or 2. We learned also that if we order the parameters so that

the four qi have highest precedence, the leading term is f(λ1, λ2, p11, p22, p12, p21)q
2
1q

2
4, for

some polynomial f in the indicated parameters only.

16

6 Phase Three

The work done in Phase One constitutes a viable solution to the Six-Line Problem, given

the 3D data of an object. But we want to compute the complete resultant for all objects,

in all 13 parameters.

Grosshans, Gleason, Williams, and Hirsch [1] were the first to compute this polynomial

res, using invariant theory and experimenting with lots of numerical cases, observing

various dependencies among the variables and exploiting various symmetries in the equa-

tion. They found a res with 239 terms. The final answer is quartic in the 3D invariants

and quartic in the 2D invariants, yielding total degree 8. An alternative approach by

Stiller and Ma used interpolation by generating a large number of “matching” object

image pairs and exploiting the degree bounds predicted by Lewis. How do we know this

polynomial is correct? Recall that each qi occurs only in equation di = 0 and can be

solved for, yielding a rational expression, for example

q1 = (g λ2 a3
22 − g λ1 a12 a21 a2

22 − n22 λ2 a21 a2
22 + n11 λ2 a21 a2

22 + 2 g λ2 a12 a2
22 −

g λ1 a12 a
2
22−n11 n22 λ2 a

2
22+n11 λ2 a

2
22+g2 λ2 a

2
22+n22 λ1 a12 a

2
21 a22−n11 λ1 a12 a

2
21 a22−

g λ2 a2
21 a22 − g λ1 a2

12 a21 a22 + n11 n22 λ2 a12 a21 a22 − 2 n22 λ2 a12 a21 a22 +

n11 λ2 a12 a21 a22 − g2 λ2 a12 a21 a22 + n11 n22 λ1 a12 a21 a22 + n22 λ1 a12 a21 a22 −
2 n11 λ1 a12 a21 a22 − g2 λ1 a12 a21 a22 − g λ2 a21 a22 + g λ2 a2

12 a22 − g λ1 a2
12 a22 −

n11 n22 λ2 a12 a22 + n11 λ2 a12 a22 + g2 λ2 a12 a22 + n11 n22 λ1 a12 a22 − n11 λ1 a12 a22 −
g2 λ1 a12 a22+g λ1 a12 a

3
21−n11 n22 λ1 a

2
12 a

2
21+n22 λ1 a

2
12 a

2
21+g2 λ1 a

2
12 a

2
21−g λ2 a12 a

2
21+

2 g λ1 a12 a
2
21 + n11 n22 λ2 a

2
12 a21 − n22 λ2 a

2
12 a21 − g2 λ2 a

2
12 a21 − n11 n22 λ1 a

2
12 a21 +

n22 λ1 a2
12 a21 + g2 λ1 a2

12 a21 − g λ2 a12 a21 + g λ1 a12 a21) / (g λ2 a12 a21 a2
22 −

g λ1 a12 a21 a2
22 − n22 λ2 a21 a2

22 + n22 λ1 a21 a2
22 + g λ1 λ2 a12 a2

22 − g λ1 a12 a2
22 −

n22 λ1 λ2 a2
22 + n22 λ1 a2

22 + n11 λ2 a12 a2
21 a22 − n11 λ1 a12 a2

21 a22 − g λ2 a2
21 a22 +

g λ1 a
2
21 a22−g λ1 λ2 a

2
12 a21 a22+2 g λ2 a

2
12 a21 a22−g λ1 a

2
12 a21 a22+n22 λ1 λ2 a12 a21 a22+

n11 λ1 λ2 a12 a21 a22 − 2 n22 λ2 a12 a21 a22 + n11 λ2 a12 a21 a22 + n22 λ1 a12 a21 a22 −
2 n11 λ1 a12 a21 a22 − g λ1 λ2 a21 a22 − g λ2 a21 a22 + 2 g λ1 a21 a22 + g λ1 λ2 a

2
12 a22 −

g λ1 a
2
12 a22 − n22 λ1 λ2 a12 a22 + n11 λ1 λ2 a12 a22 + n22 λ1 a12 a22 − n11 λ1 a12 a22 −

g λ1 λ2 a22 +g λ1 a22−n11 λ1 λ2 a
2
12 a

2
21 +n11 λ2 a

2
12 a

2
21 +g λ1 λ2 a12 a

2
21−g λ2 a12 a

2
21−

g λ1 λ2 a
3
12 a21 + g λ2 a

3
12 a21 + n22 λ1 λ2 a

2
12 a21 − n11 λ1 λ2 a

2
12 a21 − n22 λ2 a

2
12 a21 +

n11 λ2 a
2
12 a21 + g λ1 λ2 a12 a21 − g λ2 a12 a21)

17

Lewis simply substituted for each qi its expression as above into res and checked that

the result is identically (symbolically) 0. (200 meg of RAM, 11 minutes, using Fermat.

No other computer algebra system that we are aware of could do this computation.)

We felt strongly that the Dixon-KSY method ought to work as well to compute res. But

recall that even after plugging in integers for 9 of the 13 parameters, the KSY method

produced a 500,000 term answer, almost all of which was spurious factors. Brute force

is therefore rejected. Several ideas led eventually to the solution.

The first idea, due to George Nakos, is as follows. Instead of applying the KSY method

to four equations {di = 0} to eliminate the three variables {a12, a21, a22}, do it in stages:

• Apply KSY to {d1, d2, d3} eliminating 2 variables, obtaining a polynomial y1 that still

has a12.

• Apply KSY to {d2, d3, d4} eliminating 2 variables, obtaining a polynomial y2 that still

has a12.

• Apply KSY to {y1, y2} to get the final res.

However, it’s not that easy. Each yi would have had many millions of terms, making the

third step hopeless. Lewis applied two fairly standard ideas to reduce the size of each yi.

• Interpolation: Plug in authentic 3D values for some of the parameters. Run the above

three steps with enough such sets of values, then construct res with standard inter-

polation techniques.

• Quotient Ring: We know that the final answer res is of low degree in each parameter;

for example, it is degree 2 in g and degree 1 in n11. Analogously to working over

Zp instead of Z, we could work modulo a cubic polynomial in g and a quadratic

polynomial in n11. This eliminates high degree (in g and n11) intermediate results

while, ideally, not changing the final answer. Fermat allows one to work easily and

efficiently over such fields.

While either technique alone might have sufficed, we decided to use both. There is a

problem, however, with the second technique, the well known leading coefficient problem.

Suppose R is a polynomial ring, say R = F [a, b, c, . . .]. Let I ⊂ R be an ideal such that

R/I is a field. We wish to compute in (R/I)[x, y, z, . . .] instead of R[x, y, z, . . .]. When

working over such a quotient field, algorithms such as polynomial g. c. d. dispense with

leading coefficients involving the field variables a, b, c, The leading coefficients are di-

18

vided through to produce “pseudo-monic” polynomials. This makes reconstruction of the

actual answer in R[x, y, z, . . .] problematic. But due to the work accomplished in Phase

Two, we know that the leading term relative to the qi is f(λ1, λ2, p11, p22, p12, p21)q
2
1q

2
4,

for some polynomial f in the indicated parameters. Therefore, by choosing to mod out

by g and n11 we avoid this problem. (We could mod out by n22 in addition, but that

greatly slows down the computations in Fermat.)

In summary, we chose to work modulo g3−3 and n2
11−7, and over the prime p = 17041.

Zp[g, n11] / < g3 − 3, n2
11 − 7 > is a field. We interpolated for λ1, λ2 and n22. We know

from Phase Two that the answer is of degree 1 in each of the latter parameters, so we

need to run the three steps eight times.

However, it still doesn’t work. y1 and y2 each have about 300,000 terms and, worse yet,

are of high degree (≥ 30) in a12. That makes the third step unworkable. The problem is

solved by recalling from Phase One the idea of dividing out by the contents. Compute

y1 (12 minutes). Then compute all its contents and divide out by them (123 minutes;

132 meg RAM). The result has only 90 terms! Repeat for y2. Then do the third step

(about one minute). This produces a preliminary answer with a set of values plugged

in for λ1, λ2 and n22. We then repeat seven times and interpolate for the final answer.

In doing so, one final problem arises. Because the contents were divided out often,

the eight preliminary answers may be missing leading numerical coefficients – another

incarnation of the leading coefficient problem. Especially likely is that one or more needs

to be multiplied by −1. Since we know that the final answer is a polynomial with integer

coefficients, it is easy to experiment and compute the right answer.

7 Conclusion

Elimination in stages using the Cayley-Dixon-Kapur-Saxena-Yang method succeeded for

two reasons:

(1) The final answer is of low degree in most of its variables (in fact, all of them).

(2) At each stage, polynomials are produced that are multiples of the resultant, with

huge spurious factors. But the resultant is the only factor involving all the variables.

It can therefore be found by dividing out all the contents.

19

Unless there is something very special about the equations that came up in this problem,

it is reasonable to conjecture that our successive elimination method with KSY may be

applicable to other large polynomial systems.

8 Appendix. The Four Equations

• Nine 3D parameters: λ1, λ2, n11, n22, g, p11, p12, p21, p22.

• Four 2D parameters: q1, q2, q3, q4.

• Four conversion variables (later we set a11 = 1): a11, a12, a21, a22.

• Four equations d1, d2, d3, d4 in the 3 variables aij and the 13 parameters. Note that qi

appears only in di and only with exponent 1.

d1 = (g a2
11 + g a11 a21 + n22 a11 a12 + a11 a22 n22 − n11 a11 a12 − a12 a21 n11 − g a2

12 −
g a12 a22) (−λ2 a12 a21 −λ2 a21 a22 +λ1 a11 a22 +λ1 a21 a22 −λ1λ2 a11 a22 +λ1λ2 a12 a21)q1 −
(−g a11 a21 − g a2

21 − n22 a12 a21 − n22 a21 a22 + n11 a11 a22 + n11 a21 a22 + g a12 a22 + g a2
22 −

a11 a22 n11 n22 + a11 a22 g
2 + a12 a21 n11 n22 − a12 a21 g

2) (λ2 a11 a12 + a11 a22 λ2 − λ1 a11 a12 −
a12 a21 λ1),

d2 = (g a2
11 + g a11 a21 + n22 a11 a12 + a11 a22 n22 − n11 a11 a12 − a12 a21 n11 − g a2

12 −
g a12 a22) (a11 a22 − a12 a21 − a11 a22 λ2 + a12 a21 λ1) q2 − (a11 a22 − a12 a21 − g a11 a21 −
a11 a22 n22 + a12 a21 n11 + g a12 a22) (λ2 a11 a12 + a11 a22 λ2 − λ1 a11 a12 − a12 a21 λ1),

d3 = (p12 a
2
11 + p12 a11 a21 + p22 a11 a12 + a11 a22 p22 − p11 a11 a12 − a12 a21 p11 − p21 a

2
12 −

p21a12a22)(−λ2a12a21−λ2a21a22 +λ1a11a22 +λ1a21a22−λ1λ2a11a22 +λ1λ2a12a21)q3−
(−p12 a11 a21 − p12 a

2
21 − p22 a12 a21 − p22 a21 a22 + p11 a11 a22 + p11 a21 a22 + p21 a12 a22 +

p21 a
2
22 − a11 a22 p11 p22 + a11 a22 p12 p21 + a12 a21 p11 p22 − a12 a21 p12 p21) (λ2 a11 a12 +

a11 a22 λ2 − λ1 a11 a12 − a12 a21 λ1),

d4 = (p12 a
2
11 + p12 a11 a21 + p22 a11 a12 + a11 a22 p22 − p11 a11 a12 − a12 a21 p11 − p21 a

2
12 −

p21 a12 a22) (a11 a22 − a12 a21 − a11 a22 λ2 + a12 a21 λ1) q4 − (a11 a22 − a12 a21 − p12 a11 a21 −
a11 a22 p22 + a12 a21 p11 + p21 a12 a22) (λ2 a11 a12 + a11 a22 λ2 − λ1 a11 a12 − a12 a21 λ1).

20

Acknowledgements

We wish to thank Robert M. Williams (NAWCAD, Patuxent River, Maryland) for

championing this problem and being a steady source of support, George Nakos (U.

S. Naval Academy) for teaching us the Dixon Resultant, and Michael Hirsch (University

of Delaware) for helping on early stages of the project. We also wish to acknowledge

Williams, Ron Gleeson (College of New Jersey), and Frank Grosshans (Westchester of

Pennsylvania) for their many contributions to this problem and their work in first solving

the system in the appendix.

21

References

[1] F. Grosshans, R. Gleason, R. Williams, and M. Hirsch. personal communication.

[2] D. Kapur, T. Saxena, and L. Yang, Algebraic and Geometric Reasoning Using Dixon

Resultants, in: Proc. of the International Symposium on Symbolic and Algebraic

Computation (A.C.M. Press, New York, 1994).

[3] Robert H. Lewis, Computer Algebra System Fermat. http://www.bway.net/̃ lewis/,

http://www.fordham.edu/lewis/

[4] L. Quan, Computation of the Invariants of a Point Set in P 3 from its Projections in

P 2, in: Neil L. White, ed., Invariant Methods in Discrete and Computational Geometry ,

(1994) 223–244.

[5] Peter Stiller, Symbolic Computation of Object/Image Equations, in: Proc. of the

International Symposium on Symbolic and Algebraic Computation (A.C.M. Press, New

York, 1997) 359–364.

[6] Peter Stiller, Charles Asmuth, and Charles Wan, Single-View Recognition – the

Perspective Case, Proceedings SPIE International Conference, Vision Geometry V, Vol.

2826, Denver, CO; 8/96, pp. 226–235 (1996).

22

