
Fermat User’s Guide

for

Linux and Mac OSX

32 bit and 64 bit versions

Robert H. Lewis

c©1992, 1995 – 2023 by Robert H. Lewis. all rights reserved.

http://home.bway.net/lewis/

July 25, 2011 v3.9.99, 4.19 (32 bit)
Small revisions, 2016, 5.22 (64 bit); 2017; 2021; 2023; 2024

-1

Table of Contents

Introduction 1

1. Interpreter Commands 6

2. Built-in Functions 15

3. Names 26

4. Variables and Arrays 27

5. Expressions and Assignment 29

6. Array Expressions 31

7. The Array of Arrays 34

8. Functions 35

9. Arithmetic Modes (Ground Rings) 42

10. Polynomials 44

11. Quolynomials 49

12. Polymods 50

13. Laurent Polynomials 52

14. Character Strings 53

15. More Built-in Functions 55

16. The Dangerous Commands 57

17. Errors and Warnings 61

18. Popping, Pushing, Debugging, and Panic Stops 63

19. Initializing with Ferstartup 65

20. Hints and Observations 66

Appendix One 69

Appendix Two 69

Appendix Three 70

Appendix Four 79

Appendix Five 92

Appendix Six 93

Index 99

Titlepage: Two linked toruses. An FFermat generated image. You will find more images
scattered here and there in the manual. [Unfortunately the graphics of FFermat no longer
work on Mac OS.]

*** As of January 2021 all 32 bit versions are obsolete. Most of
*** This manual still applies to them, but there are no guarantees.

0

Fermat User’s Guide

Robert H. Lewis

c©1992, 1995 – 2023. all rights reserved

Fermat is an interactive system for mathematical experimentation. It is a super calcula-
tor – computer algebra system, in which items being computed can be rational numbers, real
numbers, complex numbers, modular numbers, finite field elements, multivariable polynomi-
als, rational functions (“quolys”), or polynomials modulo other polynomials (“polymods”).

There are several versions of Fermat, in different senses of the word “version.” Originally,
in the late 1980s, Fermat was only for Macintosh and ran under Apple’s MPW development
system, which provides a command-line interface. Later, stand-alone versions were produced
for Macs and Windows95/98/NT/etc. with Metrowerks CodeWarrior. These versions were
written in Pascal. Then versions written in C were created for Linux, Unix, and Mac OSX.
The other sense of “version” involves the basic “type” one is computing with. All recent
versions (since 1999) work over the rationals, in which the ground ring of numerical values is
ratios of integers of unlimited size, or over finite fields. There is an old (circa 1999) version
that works over the reals, in which case numerical values are the classic “floats” of about
18 significant digits. That version is called FFermat and has graphics capabilities, but is
only for Mac OS 9 “classic”. For a while the rational version was called “QFermat” when
it was necessary to differentiate it from FFermat, but I no longer bother.

Choosing rational or modular “mode” establishes the ground field (or ground ring) F .
On top of this may be attached any number of unevaluated variables t1, t2, . . . , tn, thereby
creating the polynomial ring F [t1, t2, . . . , tn] and its quotient field, the field of rational
functions, whose elements are called quolynomials or quolys. Further, some polynomials
p, q, . . . can be chosen to mod out with, creating the quotient ring F (t1, t2, . . .) / < p, q, . . . >,
whose elements are called polymods. Finally, it is possible to allow Laurent polynomials,
those with negative as well as positive exponents. Once the computational ring is established
in this way, all computations are of elements of this ring.

Fermat has extensive built-in primitives for array and matrix manipulations, such as
submatrix, sparse matrix, determinant, normalize, column reduce, Smith form, and matrix
inverse. It is consistently faster than some well known computer algebra systems – orders
of magnitude faster in some cases.

Fermat provides a complete programming language. Programs are called functions, and
their use is typical of that in many languages. Programs and data can be saved to an
ordinary text file that can be examined as any other file, read during a later session, or read
by some other software system.

Fermat has several unique features that enhance debugging. It is possible to interrupt
Fermat by moving the cursor to the left edge of the screen (with the mouse) (old obsolete
Windows version) or typing control-c (Linux, Unix, OSX). One can then examine the state

1

of the computation, and later resume it. Error diagnostics are very specific – much more so
than in some other systems, which struggle to tell you that an error has occurred somewhere
before the last semicolon.

Via arrays, Fermat allows for string processing. The built-in array primitives permit
substring and concatenation operations.

The features in Fermat reflect my own interests. It began as a kind of arbitrary precision
APL. Surprised that it was much faster in manipulating matrices than the computer algebra
system that I had access to at the time (on a VAX), I extended it to help in my research in
low dimensional algebraic topology. Polynomial variables were added for the same reason.
Research in computational group theory and algebraic number theory suggested several new
features and changes in old ones (see Appendix 3, Example 1).

I envision the users of Fermat to be rather sophisticated in both mathematics and
programming. (However, you don’t have to do any programming to use Fermat.) At many
places in the design and implementation of Fermat I had to balance the conflicting goals
of flexibilty and safety. That is, whether to allow the user certain freedoms or language
features that might perhaps be abused, or to circumscribe the user in the name of safety.
Since I regard the users as sophisticated, I have usually chosen freedom.

∗ This is the Fermat manual for Linux and OSX, 32 or 64 bit ∗

Basic features - a simple example:

When the user invokes the system he sees the prompt character > ; the interpreter is
waiting for a command of some sort. The user could enter: 8+23 <return>, and the system
responds immediately with 31, and the prompt character again. The user could enter any
arithmetic expression following the usual syntax, such as (8− 3) ∗ (178− 96)/2 <return>.

Fermat always responds with a number after every user command. If there is no obvious
number associated with a command, it responds with 0. For example, the creation of an
array or function yields a 0.

The result of a computation may be stored for later use. The syntax of “set x equal to
8+23” is

> x := 8 + 23 [blanks may be inserted for clarity]

31

Fermat ignores blanks inside long integer constants, as 222 333 444 = 222333444.

The name x may or may not have been used before. The user can now compute
expressions in x, like

> y := (x− 29) ∗ x− 60

2

If the formula is going to be used frequently, the user will want to give it a name, say F :

> Function F (t) = (t− 29) ∗ t− 60.

2

0 [0 is the computed result of a function definition]

The t is called a formal parameter or just parameter. Any number of parameters is allowed.

The user can now enter commands like

> y := F (x)

2

Notice that F(31) has been computed, stored in y, and the answer displayed.

> F (27 + y + 1)

−30

Here F (30) has been computed and displayed, but not stored anywhere by the user. The
latest computed result arising from a terminal command is stored in the system variable,
where it can be accessed via the symbol <control-q> (hold control and press q), which looks
like a left facing arrow.

In rational mode, adding 1/3 + 1/6 produces 1/2. Note well: rational numbers are
computed and there is no roundoff of any sort. Values not whole integers are also displayed
as decimals, to a precision (called the display constant) selected by the user. For example,
with display constant 3, 1/3 will be displayed as

1/3 or 0.333333333333333333333333

(3 blocks of 8 digits). Setting the display constant to 0 turns off this feature.

Computed values and function definitions can be saved from one session to the next.
They are stored in an ordinary ASCII file that can be edited with an ordinary word pro-
cessor. This file is called the save file or, when being read, the input file.

Fermat uses the ordinary character set of most languages. These symbols will be de-
scribed in this manual as they are encountered. They are summarized in Appendix 2.

Fermat is command-line oriented. Type a line, then press the return key at the end.
You may enter long commands that occupy more than one line by putting the continuation
character ‘ (upper left key on keyboard) on the end of each line (except the last, of course).
This continuation character essentially means “ignore the invisible end-of-line character.”
There are two occasions when it is not needed, inside multi-line comments and inside multi-
line character strings (also called literals). See the later chapters on “Comments” and
“Character Strings.”

Let’s continue the example of a Fermat session. Suppose the user has a file of previously
saved data called “stuff”. He uses the imperative read command

>&(R = stuff) or >&(R = ‘stuff.txt’)

to open the file for reading and bring the data into this session. Suppose there is a 3 × 3
matrix [x]. To see it, he can use the short form of array display,

>![x

which results in

> [x] := [[1, 3, 12,

2, 7, -5,

0, 24, -4]]

3

To compute the determinant the command is

> Det[x] [the result is:]

692

The user decides to compute the characteristic polynomial of [x]. First he adjoins a poly-
nomial variable t:

>&J
Change of polynomial variable. [Fermat prompts for the name.]
Enter variable name:

> t

The user subtracts the variable t from every element in the main diagonal. This is done
with:

> [y] := [x]− [t] [[t] means a diagonal matrix, 3× 3 since [x] is.]

Just to look at it, he displays [y]:

>![y

> [y] := [[-t + 1 , 3, 12,

2, -t + 7 , -5,

0, 24, -t - 4]]

Then invoking determinant computes the desired polynomial:

> w := Det[y]

−t3 + 4t2 − 89t+ 692

(There is a built-in function Chpoly to more easily compute characteristic polynomials.)

To check the Cayley-Hamilton Theorem, the user decides to evaluate this polynomial at the
matrix [x], using the built-in command # for polynomial evaluation:

> w#[x]

[[0, 0, 0,
0, 0, 0,
0, 0, 0]]

The user decides to change the ground ring from the present ZZ[t] to ZZ[t]/ < t2 + 1 >. He
gives the imperative form of the mod-out-by-polynomial command

> &(P = t2 + 1, 1)

The extra “1” tells Fermat that t2+1 is irreducible, so an integral domain results. Then
the command

> 1/(t+ 1) yields:

(−t+ 1)/2

Everything will be saved to the file “stuff2”, via the save command(s):

4

> &(S = ‘stuff2’)

> &s

The user now exits:

> &q

bye

NOTE: the command to quit is &q.

*** As of January 2021 all 32 bit versions are obsolete. Most of
*** This manual still applies to them, but there are no guarantees.

*** The July 2023 revision of Fermat (version 7.0) was significant,
mostly involving factoring of polynomials. Look for Pre 2023 and
Post 2023 to see the corresponding revisions in this manual.

5

Interpreter commands

Interpreter commands affect system-wide globals, perform I/O, or display variables or
functions. Most begin with the symbol & and have the syntax &<symbol>. There are also
the cancel commands @<name>, and the terminal I/O commands ! and ? . (Note:
The brackets < and > are not entered by the user – they designate that <symbol> and
<name> are elements of syntax of the language. A <symbol> is a key-stroke. A <name>
is a legal Fermat name, a sequence of up to ten digits or letters of the alphabet, beginning
with a letter.) Many of the & commands can be used as toggle switches to flip a global back
and forth between two possibilities, or as imperative commands to force the global into a
certain position. There is a later paragraph on the imperative form of switches.

A Word to the Wise

Don’t leave a toggle switch on unless you wish to use it. Don’t adjoin a polynomial
variable unless you are going to use it. Every capability costs a little in performance.

Cancel

@ : delete a variable, array, or function; erase it; cancel.
To delete a list of items, say variables x, y, array [x], and functions F and G, enter

@(x, y, [x], F,G). The list may be in any order.
Occasionally, after many computations, one develops a large number of now useless

arrays, often many of the same name. (This can’t happen with ordinary variables.) To
delete all arrays named [x], enter @[∗x]. To delete all arrays (a powerful command!) enter
@[∗∗].

Similarly, during a session of active experimentation and creation of functions, one often
develops many versions of the same function. To erase all but the latest version, the delete
command has a purge option, indicated syntactically by angle brackets, < and > (less than
and greater than). To purge the function G, enter @<G>. Mnemonically, you are erasing
a “vector full” of G’s. This can also be done with arrays, and can be done as part of a list
of deletions.

@ can also be used to break out of certain modes, if you change your mind. See under
&r, &s, and ?.

The &<symbol> commands

&a: Toggle switch to change array initial indexing value. By default it is 1, which means
the first entry in array [x] is x[1], uniformly for all arrays. For two-dimensional arrays, the
first element is x[1, 1]. Entering this command changes the constant to 0, so the first element
of array [x] is x[0] or x[0, 0]. Note that the creation of arrays is unaffected – indeed the
arrays themselves are unaffected, it is only the accessing of arrays that changes. See the
later chapter on “Variables and Arrays” for more information.

&b: Toggle switch to control closing of input file when a syntax error occurs while
reading. When on and an error occurs, the file is closed. This makes it easier to use a word
processor to edit the file. See &r.

&d: Change the display constant. In rational mode, the display constant is the number
of blocks of 8 significant digits to the right of the decimal point displayed by the interpreter

6

when a non-integer is displayed. If the display constant is 0, this feature is disabled. This
can also be affected by the options after a display “!” command (see below). If you enter &d,
you will be prompted to enter the new display constant. Alternatively, use the imperative
form described below.

&D: Set the determinant cutoff. Two basic ways to compute the determinant are ex-
pansion by minors and Gaussian elimination. The first is an O(n!) method and the second
is an O(n3) method, so is “of course” superior. But 5! = 120 and 53 = 125. Furthermore,
it is far easier to multiply polynomials than to divide them. Fermat runs a hybrid of these
two. The determinant cutoff controls the switchoff point. Setting &D = −1 lets Fermat
decide where to switch off. Setting &D = n means begin with Gaussian elimination and do
the last n rows by minors. &D = 0 means Gaussian elimination all the way. Type &D, and
you will be prompted for the value. The imperative form &(D = ...) can be placed inside a
function. The default cutoff is not always the best if there are lots of complex quolynomials
in the matrix. This does not work the same way with sparse arrays. See “determinant
cutoff, sparse”. There are other ways to compute determinant; see appendix four.

&e: Toggle switch to change error handling in higher command levels. When turned
on, Fermat will attempt to recover from certain errors in certain situations. See the later
chapter “Popping, Pushing, Debugging, and Panic Stops”. Entering &e again turns this
feature off.

&E: Toggle switch to eliminate the extra blank line that Fermat puts on the screen
between lines of input and output.

&f, &F: List all current functions. Only the names and parameter lists of each will be
displayed. To list the complete body of the functions as well, enter &F∗ or &f∗. To list the
body of only the function named G, type &F,G , &f,G , &F<G , or &f<G. These all
have the same effect. The choices exist so that the user doesn’t have to release the shift key
when entering the command. (< and comma are on the same key.)

To facilitate the editing of functions, Fermat will display the function with the continu-
ation character ‘ (upper left key on keyboard) at the end of each line. You can easily change
part of the function on the screen, cancel the function with @, and then enter the amended
version from the screen. Alternatively, you don’t have to cancel the old version – the new
version is stacked on top of the old. [You can also purge the old version(s), keeping only the
most recent, as explained in the chapter “Functions.”] Note well: this character ‘ should
not appear in an input file and is not part of the function definition.

&g: Report the status of the system-wide “globals”. If you can’t remember the ground
ring, what file you are saving to, what the array initial index is, etc., enter this command.
Several globals, such as error-push (&e) and random divisor (& r), are not mentioned unless
they have been changed from the default.

&h: On Linux, Unix, and OSX, reports the heap size – the number of bytes of memory
that have not yet been allocated.

&m: Change the command interrupt level. This is now obsolete; just hit cntl-c. See
below under “Popping, Pushing, Debugging, and Panic Stops”.

&M: Change the prompt. If you don’t like > for a prompt, change it to something else.

7

&M will ask you for the new prompt. If you wish no visible prompt, change it to either
the empty string, by hitting <enter> immediately, or change it to the end-of-line character
(ASCII 13) by typing one blank and then hitting <enter>. These two will seem equivalent
until the interpreter enters a higher command mode (see the chapter on “Popping, Pushing,
Debugging, and Panic Stops”.)

&n: Toggle switch for “modpolyreadin.” See polynomial read-in below.

&N: Toggle switch to cut off “noise,” suppress the displaying of all results (until &N is
entered again). Displaying of individual results can be suppressed by typing colon before
<enter>. For example, x := 1000! : will correctly assign x, but nothing will be displayed
on the terminal screen.

&o: Used to save specified variables to the output file. For example, !(&o, x, y) writes
the value of x and y to the previously defined output file. See &s, below.

&p: Change into modular ground ring. See the later chapter “Arithmetic Modes”.

&P: Polynomial mod-out. You will be prompted to enter the polynomial to mod out
by. For example, you could enter t2 + 1 to simulate the field of complex numbers. &P can
also be used to stop modding out, by entering −t after the prompt. See the chapter on
“Polymods”.

&q, &Q: Quit.

&r, &R: read from input file, loading previously saved functions and variables. An input
file may be created using an editor (save as ASCII or raw text) or the save command (see
&s below). Each line of text will be treated as if the user had entered it during a Fermat
session (except that end-of-line will be ignored). There must be a semicolon after each
complete command, except after comments or multiline literals in functions. Fermat will
not read beyond the first semicolon it sees on the line. Reading ceases when the
&x command is met. The file should end with the &x command (see &x below).

The input file must not itself contain a read command.
The first time you enter &r, if you do so from the keyboard, you will be prompted for

the name of the file to be read from. If the first read command is made from a function,
use the imperative form: &(R = <filename>) . Later calls to &r will take up where the
last one stopped – i.e., after the &x. (More information below under “Imperative form of
switches”.)

It is possible to read from another, different file by entering &R. You will be prompted
for the name of the file. The old file will be closed and data will be read from the new file. If
you wish to put this command in a function, use the imperative form &(R = <filename>).
For the rules of filename formation, see the later chapter on “Names”.

To close the file without opening a new one, use the command &(R = @). See &b.
If you entered &R by mistake, just enter “@” as the name of the file, and the read will

be aborted.
It is not an error to try to read from an empty file; nothing happens. In practice this

occurs when the user mistypes the name of the file. In some systems, the user discovers
the problem only much later after a lot of frustration. To prevent this annoying situation,
Fermat issues a warning message when it tries to read from an empty file.

8

&s, &S: Specify and save to an output file. The current variables and functions will
be written to (the end of) an ordinary text file, which can be edited and later read during
another Fermat session. The previous contents of the file are not erased.

&s and &S are not strict analogs or duals of &r and &R. It is possible to do a “dumb
save” that has no analog in reading.

The first time you enter &s, if you do so from the keyboard, you will be prompted for
the name of the file to be saved to. Nothing will be written to the file you name. You have
so far only specified its name. Upon the second &s command, all of the current functions
and variables will be written to the file in human readable (and Fermat readable) form.
Each succeeding &s likewise saves all the current functions and variables.

If you have been saving data to one file and wish to change to another, enter &S. Nothing
will be written to the file you name. You have so far only specified its name. You will be
prompted for the name of the new file. The old file will be closed (which means that if
Fermat crashes, the saved material should survive. More on this in the chapter “Hints and
Observations.”). Subsequent commands &s will save data to the new file. If you wish to
put the &S command in a function, use the imperative form &(S = <filename>). For the
rules of filename formation, see the later chapter on “Names.”

Each call of &s adds more stuff to the previous contents of the file.
To close the file without opening a new one, use the command &(S = @).
Inserted in the saved file will be the commands &p, &a, &J, etc., reflecting the arithmetic

mode (ground ring), initial array index, polynomial variables, etc. In this way, if you read
the saved file in your next Fermat session, all these globals will be restored to their status
at the moment you saved the file. (More information on this below under “Imperative form
of switches”.)

It is possible to do a “dumb save” in which raw data only is appended to the save file.
Use the display command ! along with &o, as in !(&o, x, y, x + y), which writes the
current values of x, y, and x+ y to the file that has already been specified as the save file.

As a time- and space-saving aid, one can add the ∧ when saving, as in !!(&o, ‘q := ’,
∧q, ‘;’). Without the ∧, q is duplicated in the course of expression evaluation. That might
be a big waste of time or space.

If you entered &S or &s by mistake, just enter “@” as the name of the file, and the
command will be aborted.

Note: input and output cannot be to the same file.

&t: Toggle switch to turn automatic timing on/off. When on, the length of time in
seconds that each command or calculation takes will be displayed right after the result of
that command or calculation is displayed. The measured time does not include the time it
takes to display the result – which, for very large numbers, can be substantial. The accuracy
depends on the OS, 1/60th - 1/1000 of a second. Before 2009, in OSX the cpu time was
displayed, not the actual real time.

The display of elapsed time changed in 2010. When timing is enabled, two numbers are
displayed, called ”Elapsed CPU time” and ”Elapsed real time”. CPU time is just the CPU
time used by Fermat. This is what has been displayed by Fermat in most previous versions.
However, the number is meaningful only up to about an hour. For much longer times, the
value shown is meaningless.

9

Elapsed real time is wall clock time, just as it sounds. If the elapsed real time is more
than 5 seconds, then it is also displayed.

&T: Report the time since Fermat was invoked. This command can be used to measure
how long part of a function takes to run, by setting a variable equal to &T, then performing
the computation, then computing the difference between &T (a second call) and the variable.

&U: Toggle switch to enable ugly display. When on, Fermat will display long integers
and polynomials in the style of other computer algebra systems (Maple). This facilitates
communication between Fermat and the others.

&v: List all current variables. Their values as well as their names will be displayed
unless &N (see above) has been set. Alternatively, follow with a colon to suppress the
values. Only about the first 150 lines of a large polynomial are shown, unless & s has been
set.

&V: Turn on “verbose display.” Will display the progress of the more involved and time-
consuming procedures, such as Chpoly, Smith, or matrix inverse. A good thing to turn on.
Post 2023: There is a function Verbose to report if it is on.

&W: Turn on a second level of “verbose display.”

&z: Toggle switch to turn on/off the Zippel-like GCD algorithm. On by default. Should
be on if there are more than, say, 7 poly vars. See Appendix 6.

& G: sort the heap garbage. This can be added to the user’s functions periodically
during memory intensive polynomial calculations. A noticeable speedup occurs when used
between repetitions of an intensive calculation.

&x: Stop reading from the input file. This command provides a break, allowing the
input file to contain data in blocks, whose reading can be interrupted by computation. The
next read command causes reading to begin right after the &x. There should be an &x at
the end of the file.

& d: Change the width of the display on the window (Linux, Unix, OSX).

& r: Change the default divisor for the random number generator. More on this below
under built-in functions, Rand = random number.

& m: Toggle switch to turn modular arithmetic off/on in modular mode. Do not use
it in the situations when modular mode is automatically turned off (and then on again):
during the computation of exponents (i.e., following ∧), in array coordinates, in character
strings, after Sigma or Prod, and in format specifications, such as !!x : 8. More on this later
under “Arithmetic Modes”. The variant local form & m(<expression>) turns modular
mode off, computes the expression, then restores modular mode.

Because typing & m(. . . is sometimes awkward, the symbol or (...)may also be used
to suppress modular.

& l: list-of-monomials display. See Appendix Four.

& P: Push new command level. Begin new computation. More on this later in the
chapter “Popping, Pushing, Debugging, and Panic Stops”.

& p: Pop command level – return to lower level. Return to computation on that level.

& s: Suppress/don’t suppress display of long polynomials.

10

& t: Toggle switch to turn on/off a certain fast probabalistic algorithm to test if one
multivariate polynomial divides another over ground ring Z. Rarely, this technique can fail,
in which case you will see a “Fermat error” about “number in trial poly divide”. Then turn
it off.

&@: Panic stop – return to lowest command level after an interrupt.

&J: Adjoin a new polynomial variable: allow manipulation of polynomials in an un-
evaluated variable. The user is prompted to enter the variable name. If entered within a
function, use the imperative form &(J = t) to directly supply the name. There can be up
to 121 such variables. Names cannot be repeated.

You can drop the polynomial variable t by entering −t after the prompt.

&l: toggle switch to change Laurent. When on, Laurent polynomials are allowed – those
with negative exponents. When this switch is changed, all the current variables are scanned
and their format changed if appropriate. For example, 1/t will become t−1 if Laurent is
now true. See the later chapter on Laurent polynomials.

&|: toggle switch to affect the value returned by the built-in function mod. When on
(the default) mod returns non-negative values, so that (−2)|3 = 1. When off, n|m simply
returns the remainder produced by dividing n by m, so (−2)|3 = −2. The second choice
executes very slightly faster; it takes an extra step to ensure that a non-negative is returned.

&B: toggle switch to change the block on the Chpoly polynomials. This is rather
technical; see the later chapter on “The Dangerous Commands.”

Imperative Form of Switches

The switches &l, &a, &e, &p, &n, &N, &|, &t and a few others can be used in an
imperative sense rather than the toggle sense described above. & r, &m, &M, &d, &D, &P,
&R, and &S can also be used imperatively, i.e., in a non-interactive way. To turn timing
on, whatever the current status, enter &(t=1). Similarly, to turn it off, enter &(t=0). 1
means on, 0 means off. To forcefully enter modular mode with modulus n, use &(p = n).
To get to rational mode in this way, use &(p= i). Similarly for the others.

&(S = <filename>) is equivalent to entering &S, and then responding with <filename>
when prompted. This form does it all at once without the prompt. It can therefore be placed
in a function. Similarly for &(R = <filename>). For the rules of filename formation, see
the later chapter on “Names.” You may also use a character string stored in an array to
name the file, as in &(S = [x]). This allows file names to be computed within functions.

& r = <expression>) sets the random divisor.
When you save to a file using &s or &S, the appropriate commands will be inserted to

record the status of polynomials, modular mode, etc. It is this imperative form of these
commands that is placed in the saved file.

Terminal Input/Output, List Output, and Dumb Save

!(variable, array): write to terminal; display on the screen. If F (x) = x ∗ x+!x, F
returns x2 and displays x on the screen. This could also be written F (x) = x ∗ x; !x. The
first version will return the value x2 (since !x returns value 0), the second will return 0

11

(the last value computed – displaying returns value 0). Another possibility is F (x) =!x;
Return(x ∗ x).

You can display written messages, such as:

!′value of x :′; !x; !; !′value of y′; !y; . . .

You can have any character except the quote ′ itself in a quoted message. Quoted messages
can extend over line boundaries.

!x does not move up to a new line, so the next use of this command will continue
displaying on the same line. Using ! by itself, !; will start a new line of output.
Alternatively, to display and move up all at once, use the double exclamation: !!x.

On some systems !x will not necessarily display x immediately; rather, the data will be
displayed when the buffer is full. To force the immediate display, use !!x.

List Output: You can use the syntax

!(< expression >,< expression >, . . . , < expression >)

to display a list of expressions all on one line. Here <expression> means an algebraic
expression or a quoted string. A certain default amount of spacing is inserted between the
items. For example, to show variables x, y, and z with a message between, you could use
the syntax !(x, y,′here is z: ′, z). The user can add spaces after any item in such a list
with the syntax !(x, y : 8,′here is z: ′, z : 8). y and z will occupy a total of eight spaces;
however if y or z itself requires more than 8, it will be printed in its entirety. Any expression
may be substituted for the 8 (it is truncated to a real integer if necessary). The spacing
conventions differ slightly in modular arithmetic mode (which is explained in “Arithmetic
Modes” below.)

In any mode, there is a certain minimum amount of spacing that can’t be overridden.
Note that the spacing feature applies only to list output – !x : 8 is illegal.
!!(x, y, . . .) will display a list and then move up to a new line.
As a time- and space-saving aid, one can add the ∧ when saving, as in !!(&o, ‘q := ’,

∧q, ‘;’). Without the ∧, q is duplicated in the course of expression evaluation. That might
be a big waste of time or space.

Dumb Save: You can append raw data (as opposed to the “prepared” data the &s command
creates) to a save file by using &o as the first argument in a list output command, such as
!!(&o, x, y, x+ y). &o means the previously specified save file.

Note that !!(&o, x, y, . . .) is fine but !!(&T, x, y, . . .) is an error. If the first argument in a
list display starts with & then it must be &o.

Displaying Arrays: Two formats are available for both ordinary and Sparse arrays, “short
form” and “long form.” The short form is the same for both, but the long form is not. [See
the chapter “Variables and Arrays” below for more about Sparse arrays.]

First, for ordinary arrays: Since numbers in Fermat are often many digits long or com-
plicated fractions, the long format display ![a] conveniently shows one value of the array per
line, in column-major order. If you expect a matrix to be composed of small integers,
however, the short form ![a is nice: it displays the matrix in the familiar square pattern.

12

Analogously with list output, the command ![x : 8 will add spaces after every displayed
number. However, ![x] : 8 is illegal – indeed, it makes no sense.

The long form displays the name and coordinates as well as the value of each entry. For
example, if you have x[2, 2] with x[i, j] = i+ j, ![x] produces:

> x[1, 1] := 2

> x[2, 1] := 3

> x[1, 2] := 3

> x[2, 2] := 4

The short form: Fermat displays the name of the matrix, as in:

>[x] := [[1, 3, 12, ‘
0, 24, −5]]

You may change any of the components, change the name if you wish, and enter the
entire matrix (by highlighting it with the mouse), such as:

>[y] := [[2, 3, 12, ‘
0, 24, −5]]

where x→ y and 1→ 2.

Note: In the interests of saving both time and space, Fermat will not display all of a
huge number (integer constant) within a matrix when writing to the console terminal. It
only displays the first couple hundred digits. This is controlled by & s.

Sparse arrays:
The long form displays the array as a list of rows, only showing those entries that are

not zero. For example, if [x] is Sparse, ![x] may produce:

>[x] := [[1, [2, -1], [3, 19]] ‘

[2, [1, 8], [2, -2]] ‘

[3, [2, 1], [3, 11]]]

This [x] has in row 1 a −1 in column 2 and a 19 in column 3, in row 2 an 8 in column 1
and a −2 in column 2, etc. The dimensions of [x] are not apparent from the long form; it
may have more than 3 rows, so long as all entries are zero there.

The short form is the same as for ordinary matrices. If the above [x] is 3×3, ![x produces:

>[x] := [[0, -1, 19, ‘

8, -2, 0, ‘

0, 1, 11]]

?(variable, array): get input from the terminal; interrogate user. If F (x) =?y;x− y. F
asks the user to enter a value for y, then computes x− y. Fermat halts when it encounters
?y and prompts the user. Nothing will happen until the user enters a value for y, which
may be any legal expression.

When used with an array, such as ?[x] , Fermat displays the name and coordinates of
each entry in the matrix in row-major order and waits for the user to enter a value for
each successive coordinate. If you’ve made a mistake or for any reason want to break out
of this array input mode, just enter ’@’, the cancel symbol.

Interrogation cannot be used with Sparse arrays.

13

A well known Julia Set. 1 minute on a Macmini

*** As of January 2021 all 32 bit versions are obsolete. Most of
*** This manual still applies to them, but there are no guarantees.

14

Built-in functions

The built-in functions operate on numbers, arrays, or polynomials in arithmetic or
algebraic fashion. Initially I intended each function to have a special one-character symbol as
its name, but that gets unwieldy. Many have such symbols, and many also have “ordinary”
mnemonic names, which always start with a capital letter. These names are reserved and
cannot be used by the programmer for any other purpose. With very few exceptions, the
name of the function precedes its argument. Also with very few exceptions, the parentheses
around the argument are optional if the symbolic name is used but must be there if the
ordinary name is used, unless the argument is an array. Putting the parentheses in when
not necessary costs a very tiny additional amount of time to parse them.

Conventions:

In the following, if I make a statement like “x can be a polynomial but not a quolyno-
mial,” I mean that x cannot be a quolynomial with denominator 6= 1. Similarly, if I say “x
can be a number but not a polynomial,” I of course mean that it cannot be a polynomial
of nonzero degree.

By number I mean a rational or modular number. By scalar I allow in addition a
polynomial or quolynomial.

Return

This built-in allows a user’s function (see the chapter on “Functions”) to terminate and
pass back a specified value. Syntax of use is Return(x), where x is any expression. Often
not necessary, except when Integer is used.

Toot: sound the system beep.

Basic Arithmetic

+,−, ∗, /: obvious, except they can be applied to arrays as well as scalars, in which case
they often act component-wise. More on this later under “array expressions”.

The Increment Command:

A large proportion of all commands in programs are of the form x := x+ y, and a great
many of these are of the form x := x + 1. To obviate the need to look up x twice or read
the 1, Fermat allows the programmer to write x :+ to increment x by 1, and x :+(. . .) to
increment x by whatever is between the parentheses. Similarly, x :− and x :−(. . .).

Update: Version 7.6, June 25, 2024 allows general commands such as x :+y for arbitrary
x and y. Also x :−y, x :∗y, x :/y. Also array references such as a[n] :−y.

Implicit Multiplication:

If two names are juxtaposed Fermat assumes that they are to be multiplied, as in
ordinary mathematical notation. Thus, 5x means 5 times x. As long as you leave a blank
between them, the same works for two adjacent variables, x y.
Note: this assumed multiplication does not apply within array expressions or
within functions with the Integer option, where the multiplication sign ∗ must always
be used. See the later chapters on array expressions and on the “dangerous commands”.

15

More Basic Arithmetic:

\ = integer division, i.e., divide and truncate. In rational mode, in x\y, if x or y is
not an integer, the denominators are ignored and the result computed from the numerators
alone. This yields an awkward way to extract the numerator of a rational number – the
built-in function Numer is more straight-forward. It can also be very confusing, especially
when used with divide in the same expression. For example, 4/3\2 = 2.
\ can also be used with arrays, as in [x]\3.
If x and y are polynomials, x\y acts as one would expect in the one variable case.

For several variables, sometimes only a “pseudo-quotient” can be computed. See the later
chapter on polynomials.

| = modulo. Naively, n|m is the remainder produced by the division of n by m, but
there are several complications. Suppose first that n and m are integers. Then the problem
is what to do about negatives: should (−2)|3 be −2 or 1? The default in Fermat is to force a
non-negative value, but the user may disable this extra step with the interpreter command
&| (discussed in the earlier chapter).

In rational mode, if x or y is nonintegral, the denominators are ignored.
| can also be used with arrays, as in [x]|3.
If x and y are polynomials, x|y acts as one would expect in the one variable case or

when y is monic, otherwise only a “pseudo-remainder” can be computed. If x is a rational
function (“quolynomial”) then x|y is not an error in Fermat.

Beware of sneaky syntax mistakes! (2 + y)/3x does not mean (2 + y)/(3x). It means
divide by 3 and multiply by x.

| . . . | = absolute value. Note: The argument ... must be a factor, not an expression, i.e.,
|x+ y| is an error; |(x+ y)| is okay. Here we are using the following standard grammatical
terms: An algebraic expression is a sum of terms. A term is a product or quotient of factors.
A factor is either a simple variable, a constant, a function call, or an expression bounded
by parentheses.

Numerical Functions

$ = greatest integer function. Can be applied to polynomials, in which case it is done
to the coefficients.

x∧n means xn. In rational mode, n has to be a small integer (< 228 in absolute value).

Sqrt(x) = square root. Computes the (non-negative) square root. In rational arith-
metic, this function returns the largest integer less than or equal to the square root. In
modular mode, this function is disabled.

n! = n factorial. If n is not an integer, it is truncated first.

Bin = binomial coefficient. If necessary, n and r are rounded to integers.

Isprime(n) = is n prime? 1 means n is prime, else it returns the smallest prime factor.
n can be up to 263 − 1. The algorithm is elementary.

Numvars = number of poly vars attached.

16

Prime(n) = nth prime. 0 < n < 1230.

Rand = random number. This function (which has no argument) returns the next
in a sequence of pseudo-random numbers. The numbers are evenly distributed integers
between 0 and 228 − 1. In modular mode, the integers are reduced by the modulus. The
precise sequence is always the same. This sameness can be useful in debugging, but is also
inconvenient at times. Fermat therefore has a variation, indicated by RRand, which factors
in the time of day to produce a “truly” random sequence.

The array form [x] := Rand or [x] := RRand fills a previously created array with random
numbers.

Additionally, one can set a global variable divisor for random, which is 1 by default.
The integers returned by random are divided by this. For example, if you set this constant
equal to 228 − 1, random will return fractions evenly distributed between 0 and 1. To set
this variable, use either the command & r, which will prompt you for the value, or the
imperative form &(r = <expression>).

< = last computed value. Fermat has a hidden “system variable” where all computed
scalars are put automatically. This function accesses that variable. Typical use: x := <
to move the value to the variable x. The array form [<] is discussed below under “Array
Functions.”

Sigma = add up. As in the mathematical notation, Σ. Here are some examples:

Sigma< i = 1, n > [1/i] = 1 + 1/2 + 1/3 + . . .+ 1/n

Sigma< i = 1, n >< j = 1,m > (a[i, j]) = the sum of the elements in the matrix [a]
(assuming that the global initial index variable has been set to 1). Note the set brackets
and the square brackets surrounding the expression to be added up. In the second example,
round parentheses were used instead of square brackets for clarity; Fermat allows either.
Any number of indexing assignments (inside the set brackets) listed one after the other, is
allowed. The index variables i and j are actual variables in the Fermat session. Modular
mode is automatically turned off during the loop control evaluations, i.e., between the angle
brackets < and >. The syntax here resembles that of loops, which are described later.

Prod = multiply out, as in standard mathematical notation, Π. Analagous to Sigma;
see above.

Modulus. Returns the numerical value of the modulus now in effect, or last in effect. If
not in modular mode (i.e., ground ring Z/p) , may return a nonsensical value.

Modmode. Boolean function; returns 1 (true) when in modular mode, 0 (false) when
not.

Powermod. See Appendix 4.

Time. It displays the time and date. Visible on startup.

Timecpu displays total CPU time since startup, returns 0. Compare &T and &ˆ .

True. Always returns 1.

False. Always returns 0.

Post 2023: There is a function Verbose to report if the verbose flag is on.

Polynomial and Quolynomial Functions

17

Deg. Two distinct uses: degree of a polynomial (or quolynomial), or number of elements
in an array. Here we discuss the former. There are two variants: (1) Deg(x) computes
the highest exponent in x (any expression) of the highest precedence polynomial variable.
(2) Deg(x, i) computes the highest exponent in x of the ith polynomial variable, where the
highest level variable has the ordinal 1. Deg(x, t) computes the highest exponent in x of
the polynomial variable t. In modular mode, Deg returns an actual integer, not reduced
modulo the modulus. For a quolynomial, it returns the degree of the numerator.

Codeg = “codegree,” just like Deg except computes the lowest exponent.

= polynomial evaluation. x # y replaces the highest precedence variable everywhere
in x with y. x # (u = y) allows for replacing other variables (here u) than the highest. x
could be a quolynomial but y must be a polynomial only. x # (u = y1, y2, y3) replaces u
with y1, the variable below u with y2, etc. Similarly if [t] is an array, x # (u = [t]) replaces
the variables from u on down with the entries of [t] in column major order until [t] is used
up. It is an error if [t] has too many entries. See the later chapter on “Polynomials”.

Fermat also allows evaluation of polynomials at a square matrix. The syntax is x #
[y]. The highest precedence polynomial variable in x is replaced with the matrix [y] and
the resulting expression simplified. [y] can contain entries that are quolynomials. This
command was used in the example in the opening chapter of this manual.

Numb = is the argument a number? If so (as opposed to a polynomial or quolynomial),
the result is 1, else it’s 0.

Numer = numerator of a quolynomial. Also gives the numerator of a rational number.

Denom = denominator of a quolynomial. Also gives the denominator of a rational
number.

Log2 = number of binary digits in the largest numerical coefficient of a quoly.

Equal and Equalneg. If-statements can involve a wasteful evaluation of arguments, as in:
if x = y[i] then when x and y[i] are large polynomials or rational functions. First x is
evaluated, which means duplicating its storage, then y[i] is duplicated, etc. Equal and Equal-
neg do not duplicate storage. The syntax is rather obvious: if Equal(x, y) then ... where
x and y can be any existing scalar variables, including array references. Equalneg(x, y) is
logically equivalent to x = −y. The speedup in time can be profound.

Move and Swap. In the same vein as Equal and Equalneg, Move(x, y) will transfer the
data of x into y. y’s previous value is discarded and at the end x is 0. x and y must be
existing scalar variables. Similarly Swap(x, y) interchanges two such variables’ data.

Remquot = remainder and quotient. Remquot(x, d, q) returns the (pseudo) remainder
(r, say) of dividing d into x and assigns the (pseudo)quotient to q. ckx = qd + r, where
c is the leading coefficient of d and k = deg(x) − deg(d) + 1 (unless d is a number or c is
invertible; then k = 0).

Coef = coefficient in a polynomial (or quolynomial). Suppose first that only one poly-
nomial variable t has been adjoined. Then the syntax of use is either Coef(x) or Coef(x, n).
x can be any expression. n must be a number. In modular mode, modular arithmetic is ig-
nored while n is evaluated. In the first form, without n, the leading coefficient is computed.

18

If x is a quolynomial, the denominator is ignored.

If there are several polynomial variables, the exact coefficient desired is specified by
listing the exponents of the variables in precedence order, highest first. For example, if t, u,
and v have been adjoined in that order, and
x = (3u−3t−3)v2 + (7u2 + (6t−8)u+ 3t2 + 3)v+u3 + (−5t−3)u2 + (3t2 + 3)u− t3−3t−1
then Coef(x, 1, 2) = 7, Coef(x, 1, 1, 0) = −8, Coef(x, 0, 2, 1) = −5, Coef(x, 2) = 3u− 3t− 3,
Coef(x, 0, 0) = −t3 − 3t− 1, Coef(x, 0, 0, 0) = −1. Coef(x, t, n) is the coefficient in x of tn.

Lterm = leading term of a polynomial. Follow it with a polynomial expression, whose
leading term will be computed.

Lcoef = the leading coefficient of a polynomial.

Nlcoef = the leading numerical coefficient of a polynomial. Unlike Lcoef, always returns
a number.

Ntcoef = the trailing numerical coefficient of a polynomial. That number is always an
actual coefficient, so can never be 0.

Zncoef = the “last” numerical coefficient of a polynomial. It will be 0 if there is no
constant term.

” = derivative of a polynomial (or quolynomial) with respect to the highest precedence
variable. This symbol is shift-’. Precede it with an expression to be differentiated.

GCD = greatest common divisor, as in GCD(x, y), x and y can be numbers or poly-
nomials, but not quolynomials. If numbers, the result is always positive, except that
GCD(0, 0) = 0. GCD(0, x) = x if x is not 0. If they are both polynomials, the result
always has positive leading coefficient. In cases where the ground ring is a field, the result
has leading coefficient 1.

EGCD = extended GCD, as in EGCD(x, y, u, v), x and y are one-variable polynomials
over a finite field. Compute u and v s. t. u ∗ x+ v ∗ y = GCD(x, y).

Content = the content of a polynomial relative to the highest polynomial variable; i.e.,
the GCD of all its coefficients. Content(x, i) is relative to the ith variable. Content(x, t) is
relative to variable t.

Numcon = numerical content, the GCD of all its numerical coefficients.

V ar. Followed by an expression that evaluates to a positive integer, as in V ar(i), returns
the ith polynomial variable, counting the highest (last created) as 1.

Height = the difference between the levels (ordinals) of the polynomial variables in an
expression. For example, if three variables have been attached, say t, u, and v in that
order, and x = v + t, then Height(x) = 3. If y = u + t, then Height(y) = 2. Height(t) =
1 =Height(u).

Level = the ordinal position of the highest precedence polynomial variable in an expres-
sion. For example, if three variables have been attached, say t, u, and v in that order, and
x = v+ t, then Level(x) = 1. If y = u+ t, then Level(y) = 2. Level(t+ 2) = 3. Level(u) = 2.

Raise = Two forms: Raise(x) and Raise(x, i). In the first, replace each polynomial
variable with the variable one level higher. In the situation of Level, above, Raise(y) = v+u.
Raise(t + 2) = u + 2. Raise(x) is an error. The second form allows the user to provide an
expression i that evaluates to a positive integer, and raises x that many levels, if possible.

19

Lower = The inverse of Raise. See above.

Rcoef = change the coefficient of a term within an existing variable. For example, if
only one polynomial variable t exists, Rcoef(x, n) := y will change the coefficient of tn in x
to the expression y. y must be a number.

With several polynomial variables, the idea is similar to Coef. In Rcoef(x, . . .) := y, y
must be suitable to be such a coefficient, else an error occurs. For example, if t, u, and v
have been adjoined in that order, and

x = (3u−3t−3)v2 + (7u2 + (6t−8)u+ 3t2 + 3)v+u3 + (−5t−3)u2 + (3t2 + 3)u− t3−3t−1

Rcoef(x, 2) := 3v − 3u− t is an error. So is Rcoef(x, 0, 0) := −u3 − 3t− 1.
In Rcoef(x, . . .) := . . ., x must be a polynomial, not a quolynomial. But in the latter case,

the commands Rcoef(Numer(x), . . .) := . . . and Rcoef(Denom(x), . . .) := . . . are useful.

Totdeg = total degree. See appendix four.

WDeg = Withdraw subpolynomial relative to a variable list. See appendix four.

Divides = Divides(n,m): does n divide evenly into m? See Appendix 4.

Deriv = Deriv(x, t, n) returns the nth derivative of x with respect to t.

Vars(x) = number of variables that actually occur in x.

Array Functions

Most of the ordinary arithmetic built-in functions can be applied to arrays, as in [y] :=
$[x]. See Appendix 2, last column.

Sparse arrays are implemented in Fermat. This is an alternate mode of storing the data
that constitute the array. In an “ordinary” n × m array, nm adjacent spots in memory
are allocated to hold the entries in the array. If an array consists of mostly 0’s, this is
wasteful of space. In a Sparse implementation, the non-zero entries only are stored via list
structures. The fact that an array has the Sparse or the “ordinary” storage structure is
often transparent to the user; however, some of the functions listed below do not work on
Sparse arrays. More on Sparse arrays later, under “Variables and Arrays,” “Expressions
and Assignment,” and “Array Expressions.”

Det, is used in several ways to compute a scalar from an array argument. If used by
itself on a square matrix, Det is determinant. Det#([x] = a) returns the number of entries
in [x] that equal a.

Similarly Det#([x] > a) and Det#([x] < a) compute the number of entries of [x] larger
or smaller than a. In modular mode (ground ring ZZn), the order is the obvious one on the
set of elements of ZZn = {0, 1, 2, 3, . . . , n− 1}. If any entry is a polynomial, an error results.
Det∧[x] returns the index of the largest element of [x] (in column major order if [x] is a
matrix). Det [x] returns the index of the smallest element of [x]. Det +[x] returns the
index of the smallest nonzero element of [x], or -1 if there is no such element.

Fermat allows a wide range of data types for the entries of a matrix – integers, rationals,
modular numbers, polynomials, quolys, polymods. No single method is best for all cases.
Fermat uses expansion by minors, Gaussian elimination, and reducing modulo n for some
n’s. (Also Gauss-Bareiss and LaGrange interpolation; see appendix four.) The last of these

20

is used for matrices of integers or polynomials with integer coefficients. The actual determi-
nant can be reconstructed from its values modulo n (for a “good” set of n’s) by the Chinese
Remainder Theorem. Alternatively, it is often possible to work modulo an easily computed
“pseudo determinant” known to bound the actual determinant. Gaussian elimination is
applicable whenever one can invert any nonzero element in a matrix. If the matrix is small
enough, expansion by minors is faster (see the command &D.) Gaussian elimination can be
problematical in modular arithmetic over a nonprime modulus, in polynomial rings, and in
polynomial rings modulo a polynomial. Fermat has heuristics to guide its choice of method.

For many matrices of polynomials, it is faster to figure out the degree of the determi-
nant, evaluate the determinant at a set of integers, and then interpolate to compute the
determinant. A short Fermat program to do this is given in Appendix 3, example 2. This
method is built into Fermat, in which the interpolation algorithm is probabalistic, with
very high probability of success. It is stunningly fast, especially for two or more variable
polynomials.

Nonetheless, if there are many polynomial variables and the matrix is sparse, expansion
by minors can be by far the fastest method. Setting the determinant cutoff (with &D) at
least as large as the number of rows will force Fermat to do this method.

As of October 2009, the LaGrange modular determinant coefficients can be dumped
to a file, rather than stored in RAM. This can be a big space saving when doing a very
large computation. The command is &(L=1). In other words, if the highest precedence
variable is x and lower ones are y, z, . . ., and if a determinant cnx

n + cn−1x
n−1 + . . . is being

computed with LaGrange interpolation, the coefficients c0, c1, ..., cn (which are polynomials
in y, z, . . .) will be dumped to the output file to save RAM.

SDet = “Space-saving determinant.” Space is saved when computing over ground ring
Z using LaGrange interpolation and the Chinese Remainder Theorem. Fermat has aways
used the the CRT algorithm from Knuth volume 2 on page 277 (exercise 7). The advantage
is one can do everything “on the fly.” The disadvantage is that if one will need, say, 50
primes, then every determinant modulo the 50 primes is stored until the end, when the
answer is computed over Z by combining them. That might need too much space. Instead,
SDet implements formulas 7-9 on page 270 of Knuth.

The disadvantage is it can’t be done on the fly: one needs to know in advance how many
primes will be needed. The user must (over)estimate this number.

Input: integer and a square matrix of polynomials. Output: determinant. Call:
SDet(n, [m]). n = how many primes will be needed. SDet is not guaranteed to work
with the more sophisticated options of Det, i.e. Det([m4], r, d1, d2).

Adjoint = adjoint of a square matrix.

Chpoly = characteristic polynomial of a square matrix. Parentheses mandatory. See
appendix four.

Sumup = add up the elements of an array.

Trace = trace of a matrix.

Minpoly A sophisticated probabalistic algorithm for computing the minimal polynomial
of matrices. See Appendix Four.

21

Altmult. Multiply two matrices using the algorithm of Knuth volume II, p. 481. A big
time saver when multiplication in the ring is much slower than addition. Especially good
for Polymods (see that chapter). Syntax is Altmult([x], [y]).

Altpower. Use Altmult to take a matrix [x] to the power n. Syntax is Altpower ([x], n).

MPowermod([x], n,m) computes [x]n mod m, analagously to Powermod. See Appendix
Four.

Reverse[a] will reverse the elements in Array a[n]. If [a] has one column, this is obvious.
Otherwise, the exact behavior depends on whether [a] is a standard array or a sparse array.
For standard, each a[i] is swapped with a[n+1−i], where you think of [a] as in column-major
order. For sparse [a], the rows are swapped.

Trans = transpose matrix, as in [y] := Trans[x].

STrans = transpose a matrix in place, as in STrans[x]. Much fqster than Trans.

Diag refers to the diagonal of a matrix, as in Diag[y] := [x]. [x] is considered a linear
array. The diagonal of [y] becomes the entries of [x]. If the name [y] does not yet exist, a
new square matrix will be created with off-diagonal entries 0. If square matrix [y] of the
right size (i.e., rows equal to the number of entries of [x]) does exist then the off-diagonal
elements are not changed.

Dually, Diag can be used on the right side of an assignment, as in [y] := Diag[x], which
sets [y] equal to a linear array consisting of the diagonal elements of [x]. [x] does not have
to be square.

There is a small subtlety in nonsquare arrays. Diag expects the number of diagonal
entries to equal the rows of the matrix. For example, if [e] is a 4 × 3 matrix, Diag[e] :=
[(9, 9, 9, 8)] is ok – but only the three 9’s will go into [e].

To create a diagonal matrix with all entries equal to a constant, say 1, you can use the
easier form [x] := [1], if [x] already exists as a square matrix.

Cols[x] = number of columns of array [x].

Deg = degree of a polynomial (or quolynomial), or number of elements in an array.
In the first case, follow it with any expression. If that expression is a number, then of
course the result is 0. In modular mode, it returns an actual integer, not reduced modulo
the modulus. For a quolynomial, it returns the difference in degrees of the numerator and
denominator.

When used with arrays the next character must be the square bracket, [. Deg[x] = total
size of array [x] (rows × columns).

[<] = last computed array. Analogous with the preceding use of <, Fermat has a hidden
system array. If you type the command [x] + [y], arrays [x] and [y] will be added and, since
you didn’t provide an assignment of the result, the result will go into the system array. You
can later access it by typing, for example, [z] := [z] + [<]. Subarrays cannot be used with
[<].

Note that the command [z]+2 will display 2 plus every element in [z], but typing 2+[z]
will produce an error. In reading from left to right, Fermat encounters the 2 first and cannot
later switch to array parsing.

22

= concatenate arrays; glue two arrays together to form a larger one, as in [z] := [x]
[y]. Neither array can be Sparse. See the chapter on array expressions.

Iszero = is the argument (an array) entirely 0? If so, return 1, else return 0. Syntax:
Iszero[x].

Switchrow = Interchange two rows in an array. Syntax: Switchrow([x], n,m). The
matrix itself will be changed.

Switchcol = Interchange two columns in an array. Syntax: Switchcol([x], n,m). The
matrix itself will be changed.

Normalize = Normalize a matrix. The matrix must not be Sparse. Convert it to a
diagonal matrix, i.e., all off-diagonal entries will be 0. The matrix itself will be changed. If
requested, Fermat will also return the change of basis matrices that it used in normalizing.
Possible invocations include Normalize([x]) and Normalize([x], [a], [b], [c], [d]). In the second
case, matrices [a], [b], [c], and [d] will be returned that satisfy [a] ∗ [x′] ∗ [b] = [x], where [x′]
is the original [x], and where [c] = [a]−1 and [d] = [b]−1. The value returned by Normalize
is the rank of [x].

The inverse change of basis matrices [c] and [d] are provided because it is far faster
to compute the inverses of [a] and [b] “along the way” then it is to use matrix inver-
sion after Normalize finishes. However, the computation of each of these matrices adds
to the total execution time, and your application may not need them all. Therefore, Fer-
mat allows you to omit any one(s) you wish. For example, Normalize([x], , [b], , [d]) and
Normalize([x], [a], , [c]) are possible. Each comma promises that an argument will eventu-
ally follow, so Normalize([x], [a], [b], [c],) is illegal.

See also the commands FFLU and FFLUC.

Colreduce = Column reduce a matrix. The matrix may NOT be Sparse (see Rowreduce).
By column manipulations, the argument is converted to a lower triangular matrix. The
matrix itself will be changed. If requested, Fermat will also return the change of basis (or
conversion) matrices that it used in normalizing. Possible invocations include Colreduce([x])
and Colreduce([x], [a], [b], [c], [d]). In the second case, matrices [a], [b], [c], and [d] will be
returned that satisfy [a] ∗ [x′] ∗ [b] = [x], where [x′] is the original [x], and where [c] = [a]−1

and [d] = [b]−1. The value returned by Colreduce is the rank of [x].
As in Normalize, one may omit computing some of the conversion matrices, for example,

Colreduce([x], , [b], , [d]) or Colreduce([x], [a], , [c]).

Rowreduce = Row reduce a matrix. The matrix must be Sparse. Exactly like Colreduce
but for sparse arrays and row reduction.

Smith = Normalize a matrix of integers into Smith normal form. The matrix may be
Sparse. This function can only be used in rational mode, and will work only if every entry
is an integer. (Any denominator encountered will be ignored, with unpredictable results.)
By row and column manipulations, the argument is converted to a diagonal matrix of
non-negative integers. Furthermore, each integer on the diagonal divides all the following
integers. The set of such integers is an invariant of the matrix.

The matrix itself will be changed. If requested, Fermat will also return the integer
change of basis (or conversion) matrices that it used in normalizing. Possible invocations

23

include Smith([x]) and Smith([x], [a], [b], [c], [d]). In the second case, matrices [a], [b], [c],
and [d] will be returned that satisfy [a] ∗ [x′] ∗ [b] = [x], where [x′] is the original [x], and
where [c] = [a]−1 and [d] = [b]−1. The value returned by Smith is the rank of [x].

The change of basis matrices [c] and [d] are handled just as in Colreduce or Normalize.
If you do not require any conversion matrices then it is possible to greatly speed up

Smith in most cases by working modulo a “pseudo-determinant”, a multiple of the gcd of
the determinants of all the maximal rank minors (see Kannan and Backem, SIAM Journal
of Computing vol 8, no. 4, Nov 1979). Do this in Fermat with the command MSmith. Not
to work modulo some number invites a horrendous explosion in the intermediate entries.
On the other hand, for relatively small matrices or sparse matrices, it’s faster to forgo the
modding out. Fermat will compute the pseudo-determinant if the matrix is Sparse. If
you already have a pseudo-determinant pd to use, use the syntax MSmith([x], pd). (If the
matrix is not Sparse, you must use the latter method. Pseudet may be helpful.)

Hermite = Column reduce a matrix of integers. The matrix may be Sparse. This
function can only be used in rational mode, and will work only if every entry is an integer.
(Any denominator encountered will be ignored, with unpredictable results.) By column
manipulations and row permutations, the argument is converted to a lower triangular matrix
of integers. All diagonal entries are non-negative.

The matrix itself will be changed. If requested, Fermat will also return the integer
change of basis (or conversion) matrices that it used in normalizing, exactly as in Smith,
above.

If the matrix is “large” and “dense” a horrendous explosion is possible in the off diagonal
intermediate entries, and in the entries of the conversion matrices.

Redrowech = the reduced row echelon form, good for elementary matrix equations of the
form AX = B. (Other Fermat commands do column manipulations as well, which of course
could be used to solve AX = B but take an extra step.) Invoke with Redrowech([a]), where
all columns but the last in [a] represent the matrix A and the last column represents B
(i.e., Redrowech never pivots on the last column.) Alternately, Redrowech([a], [u], [v]) will
return in [u] the transition matrix representing the row manipulations it used in normalizing
[a]. [v] is [u]−1. As in other similar Fermat commands, you can also do Redrowech([a], , [v]).

FFLU and FFLUC are for fraction-free LU factorization of matrices. See the two articles
in the September 1997 SIGSAM Bulletin: “Fraction-free Algorithms for Linear and Polyno-
mial Equations,” by Nakos, Turner, and Williams; and “The Turing Factorization of a Rect-
angular Matrix,” by Corless and Jeffrey. FFLU is invoked as: FFLU([x], [p], [l], [a], [b]).
[x] is the n × m matrix to be factored. [p] is an n × n diagonal matrix consisting of the
pivots used, [p] = diag(p1, p2, ..., pn−1, 1). [l] is the unit lower triangular matrix, the first
factor. [a] (optional) is the n× n permutation matrix of row swaps. [b] (optional) is [a]−1.
At the end, [x] is in upper triangular form. Let [z] be a copy of the original [x]. If [f] and
[g] are the matrices called f1 and f2 in the Corless and Jeffrey article, then at the end one
has [f] ∗ [a] ∗ [z] = [l] ∗ [g] ∗ [x]. Note that [f] and [g] are not computed by FFLU ; however
it is obvious how to get them from [p].

FFLUC allows column swaps as well as row swaps. In this way, the size of the pivots
can be reduced. FFLUC is invoked as: FFLUC([x], [p], [l], [a], [b], [c], [d]). As above, [x] is
the n×m matrix to be factored. [p], [l], [a], and [b] are the same as above. At the end, [x]

24

is in upper triangular form. [c] and [d] (optional) are permutation matrices coming from
column swaps ([d] is [c]−1). More information is in Appendix Four.

Several other functions are described in Chapter 15 and Appendix Four.

Pivot Strategies: As of January 2009 there are options for the heuristics that direct
the pivot choice in the normalization of matrices. This can have a large effect on time and
space, though often it does not. The heuristic is set with the command &u or &(u = val).
val is an integer from 0 - 5. The size or mass of a potential pivot can be measured by just
its number of terms (called term# below), or by one of two mass heuristics (called mass0
and mass1 below).

Setting val =
0 is the default previous heuristic, which selects the least massive entry by the original

mass0 heuristic.
1 selects the ‘lightest’ entry where weight = term# + sum of term# for the entire row

entry is in.
2 selects the ‘lightest’ entry where weight = mass0 + sum of term# for the entire row

entry is in.
3 selects the ‘lightest’ entry where weight = mass1 + sum of term# for the entire row

entry is in.
4 selects the ‘lightest’ entry where weight = term#.
5 is like 3 but also counts the weight of the column an entry is in.

Intersection of surfaces, resembling a manta.

25

Names

The user creates names for scalar and array variables, for files, for polynomial variables,
and for functions. All but file names must be less than or equal to 10 characters long and
consist entirely of lower case letters, upper case letters, the underline “ ”, and the 10 digits.
Spaces and tab marks are ignored. Fermat distinguishes between upper and lower case
letters.

The names of variables (scalar, polynomial, or array) must begin with a lower case letter.
When referring to an entire array, array names are surrounded by the brackets “[” and “]”.

The names of functions must begin with an upper case letter.

Names of files should be just like variable names.

If you create a file with the &s or &S command, say abc, the name of the file will be just
that – abc with no .txt or other suffix. If you create a text file with some word processor
or editor under Windows, the suffix .txt will probably be appended, whether you see it or
not. To read such a file in a Fermat session, you will have to put the name in quotes and
add the .txt, as in ’abc.txt’.

Fermat’s Cut command applied to the “manta” object of previous page.

26

Variables and Arrays

The name of a variable (see preceding chapter) must begin with a lower case letter. A
variable is created by assigning a value to the name.

Fermat allows one or two dimensional arrays. The name must begin with a lower case
letter. Before using an array, it must be created. To explicitly create an array called b
of 10 elements, use Array b[10]; to create a 3 × 3 matrix c use Array c[3, 3]. Several
arrays can be declared on one line, such as Array x[3, 3], y[4, 4], z[60, 60] Sparse, a[7, 7].
In modular mode, the dimensions are evaluated ignoring modular arithmetic. There can be
both a scalar variable and an array of the same name.

The maximum array size is 1,000,000. The maximum total size of all arrays is 5,120,000.
(This does not apply to Sparse arrays, for which there are no limits imposed by Fermat.
However, the number of rows must be < 228 and the number of cols must be < 228,
otherwise integer overflow will occur within the Fermat interpreter. This limit will probably
be removed in future versions.)

When an array is created, its values are undefined.

Sparse arrays are implemented in Fermat. This is an alternate mode of storing the data
that constitute the array. In an “ordinary” n×m array, nm adjacent spots in memory are
allocated to hold the entries in the array. If an array consists of mostly 0’s, this is wasteful
of space. Furthermore, multiplying two such matrices [x] ∗ [y] is wasteful of time, since
almost all multiplications x[i, k] ∗ y[k, j] result in 0. In a Sparse implementation, only the
non-zero entries are stored in a linked list structure, in which each node contains a pointer
to the actual data item and the row and column of the item.

A Sparse array is created by following the creation command with the keyword “Sparse,”
as in Array x[5, 5] Sparse. There is no limitation on the size of the matrix in Fermat. Sparse
arrays do not contribute to the total array size limit. An array [x] already created can be
converted to Sparse format with the command Sparse [x].

The fact that an array has the Sparse or the “ordinary” storage structure is often
transparent to the user. More on Sparse arrays below, under “Expressions and Assignment”
and “Array Expressions.” See also “sparse access loops” in the index.

Arrays are accessed, or indexed, with the syntax x[i], where i can be any expression
evaluating to an integer. In modular ground ring, i is evaluated ignoring modular arithmetic.
One has a choice of how to label the first element of an array – usually one thinks of the
first element as x[1], but sometimes x[0] is more convenient. The default in Fermat is x[1].
This can be changed by entering the command &a, which switches the initial array index to
0. Entering &a again switches back to 1. Note that this is not a property of any particular
array, but of how all arrays are indexed. Creation of arrays is not affected – it’s still x[8]
for an array with 8 elements. For two dimensional arrays, the first element is then x[0, 0].

27

Dynamic Allocation of Arrays

Arrays that are no longer needed can be freed to provide space for new arrays. This is
done with the cancel command, whose syntax is @[x], or, to free several, @([x], [y], [z]). As
arrays are created and destroyed, space is allocated and freed within a linear list of available
space in the order that the commands are received. If you have several arrays and free the
first one created, the others are moved up to occupy the empty slots. Actually, this moving
is not especially time consuming since only pointers need to be changed. Nonetheless, if
you are going to do a lot of creating and cancelling of arrays, it is best to follow the last in,
first out policy, thereby treating the linear list as a stack.

28

Expressions and Assignment

An expression is any algebraic formula following the usual rules of precedence and in-
volving scalar variables, constants, function calls, or interpreter commands. Example:

x ∗ (z + 2)+?y + F (y, 2) + a[2, 1]

The syntax for assignment is

<varname> := <expression>

When given from the terminal, an assignment statement returns the value of expression.
But when entered from within a function, the value of the statement is 0. See the later
chapter on “Functions.”

There is a shortcut increment command. Fermat allows the programmer to write x :+
to increment x by 1, and x :+(. . .) to increment x by whatever is between the parentheses.
Similarly, x :− and x :−(. . .).

Update: Version 7.6, June 25, 2024 allows general commands such as x :+y for arbitrary
x and y. Also x :−y, x :∗y, x :/y. Also array references such as a[n] :−y.

Efficient Use of Storage

An innocuous statement like x := x + y can cause problems if x and y are large poly-
nomials with thousands, or even millions, of terms. The problem is that in evaluating the
right side, x’s storage is duplicated. That may blow out the RAM. This is silly since x
is going to be changed anyway. Therefore there is an alternate syntax using the symbol
∗ to indicate that the value and storage of a variable are disposable, namely x := ∗x + y.
Variants are x := ∗x+ ∗m[2, 3] and x := ∗x ∗ ∗y. Should the user interrupt Fermat during
the evaluation and inquire what x or y is, he will find it has been set to 1. See also Move
and Swap.

When a variable is assigned a value, it is put on an “environment stack” of all active
names. Any previous value is lost. The cancel or rubout command @ removes the name
from the stack and destroys the value. The command &v displays the active variables
(follow with a colon to supress the values).

Similarly, arrays are put on a stack of active array names. With arrays, however, every
act of creation, such as Array a[3, 3] puts a new array called a of dimension 3 × 3 on the
stack. Previous arrays called a are not lost - they are just pushed down. Any reference to
array [a] is to the top most one. To reaccess the lower one(s), cancel the top one or rename
it using the “rename command”, Rname[c] := ′[d]′.

Mixing arrays and scalars in an expression is sometimes legal. This is clearly not:

a := 2 + [c]

You can mix arrays and scalars in an array assignment statement,

[a] := <array expression>

29

For example, [z] := [a] + 3. Array expressions must involve arithmetic only, no function
calls and no interpreter calls. See the next chapter, “Array Expressions.”

To set [c] equal to [b], the command is [c] := [b]. In this case, [c] does not have to
have been explicitly created before; it will get the same dimensions as [b]. If an array [c]
of the same dimensions as [b] already exists and is on the top of the stack of [c] names, its
old entries will be destroyed and new ones created equal to those of [b]. Otherwise, a new
version of [c] will be created.

Constant and Diagonal Matrices:

[b] := 2 will set every component of b to 2. [b] := [1] will set [b] equal to the identity
matrix, if [b] has been declared to be a square matrix. (If there is no [b] yet, it is an
error. If there is a non-square [b], a new square [b] will be created having the number of
rows of the other [b].) Any constant may be substituted for the 1, including polynomials.
However, a polynomial inside the brackets must be written using Fermat’s conventions of
parenthesation and precedence, such as [(5t2 +2t+1)u2 +(3t−1)u+7t2−3t+1], assuming
that polynomial variables t and u have been created, in that order. For more information,
see the later chapter on polynomials, about “polynomial read-in.”

Diagonal matrices are Sparse arrays.

Here is a further example. Suppose [a] has been declared to be 4 × 4, but [b] has not
been created. Then this will work: [b] := [a] + [1]. The interpreter will figure out that the
identity matrix [1] should be 4× 4, because [a] is. But just saying [b] := [1] won’t work –
the interpreter has no way of knowing how big [1] is supposed to be.

30

Array Expressions

In Fermat one can write expressions involving matrices and scalars that follow familiar
mathematical syntax, such as

[c] := [a] ∗ [x] + 3 ∗ [b]

If [a] is an existing square matrix, [b] := 1/[a] sets [b] to the inverse of [a], unless [a] is
singular.

Fermat returns the value 0 after an array assignment. It does not automatically display
the new array.

In array expressions the multiplication sign ∗ must be used to effect multiplication. In
ordinary expressions, if two variables or factors are juxtaposed, multiplication is assumed.
That won’t work here. The reason is ambiguities like s[x]. Is this s times [x], or is it entry
x in array [s]?

Ordinary and Sparse matrices can be mixed in expressions. If any term in a matrix
expression is an ordinary matrix or is a scalar, the result will be ordinary (unless it would too
big – then it’s an error); otherwise it will be Sparse. This provides an inelegant mechanism
for converting a Sparse matrix, say [a], to an ordinary one: [x] := [a] + 0.

Fermat allows subarray expressions. That is, part of an array [c] can be assigned part
of an array [a]. For example,

[c[1 ∼ 4, 2 ∼ 6]] := [a]

sets rows 1 to 4 and columns 2 to 6 of [c] equal to [a]. This assumes that [a] is declared to be
4× 5 and [c] is at least 4× 6. In defining the subarray, if one of the coordinate expressions
(1, 4, 2, and 6 in the above example) is left out, the obvious default values are used. For
example, if [c] has four rows then [c[, 2 ∼ 6]] := [a] is equivalent to the above. Similarly,
one can use expressions like [c[3 ∼, 2 ∼ 6]] := [a] or [c[∼ 4, 2 ∼ 6]] := [a], in which case
the default lower row coordinate is the array initial index, 0 or 1. The extreme example of
these shortcuts is [x[,]], which is legal, if pointless. [x[]] is not legal.

Subarrays can be used in either the source or target of an assignment statement (right
side or left side).

In subarray assignments, a vector declared to be one-dimensional (like a[5]) is treated
as a column vector, i.e., a[5, 1].

Both ![x[. . .]] and ?[x[. . .]] work with subarrays. Diag and Det work with subarrays.

As of April 2016, in 64 bit Fermat, subarray can be used with Sparse matrices in
assignments and with %.

However, do not write expressions that mix subarrays of sparse and ordinary matrices!
No guarantees there.

There is a similar function Minors that can; see Appendix Four.

31

Getting Data Into Arrays

Besides subarray expressions and the interrogation command ?[x], another way to easily
get data into an array is with list input, similar to list output, described above. For example,

[x] := [(2, 3, 4, 6, 8)]

creates an array of the five indicated numbers. Note the bracket and parenthesis. If [x] had
already been declared to be two-dimensional, the numbers will be inserted into the array
in column-major order. If [x] previously existed but was not of this total size, a new [x] is
created.

Yet another way to get data into a matrix is by setting up the data on the screen in
rectangular array in the same format as Fermat’s short form display of matrices (which has
been discussed previously under the ‘display’ built-in function). For example,

>[y] := [[0, -1, 19, ‘

0, 1, 11]]

Any expression may be used to specify an entry, not just constants. Just put the cursor
at the end and hit return.

For a Sparse array, one may use as well the long form, as in:

>[x] := [[1, [2, -1], [3, 19]] ‘

[2, [1, 8], [2, -2]] ‘

[3, [2, 1], [3, 11]]]

The entries do not have to be in increasing column order within the rows. Furthermore,
repeated columns are allowed, in which case the sum of all the given terms ends up in that
column.

Yet another way to easily get data into an array is with “pseudo-loops”. For example,

[x] := [< i = 1, n > < j = 1, n > 1/(i+ j − 1)]

will create the n×n Hilbert matrix. The index variables are actual variables in the Fermat
session. (Of course, they don’t have to be i and j.) Modular mode is automatically turned
off during the loop control evaluations, i.e., inside the set brackets. The complete syntax is

[< i = <exp1>, <exp2>, <exp3> > < j= <exp4>, <exp5>, <exp6> > <exp7>]

<exp7> must be an algebraic expression – no loops, ifs, etc. (Of course if you want to create
a matrix for which the expression <exp7> would have to have ifs or loops, use a function to
do so.) Each of the indexing expressions is truncated to an integer, if necessary, and must
be a small integer (< 228). All six of them must be at least the array initial index. <exp3>
and <exp6> are optional, as in for-loops. This command creates an <exp2> × <exp5>
matrix if the array initial index is 1, or an (< exp2 > +1)×(< exp5 > +1) matrix otherwise.
If <exp3> or <exp6> is not 1, then a matrix is created which has some undefined elements.

32

Arithmetic of Arrays

Multiplication of arrays [a]∗ [b] follows this hierarchy: If [a] is n×m and [b] is m×p, an
n × p is created, as is usual in matrix multiplication. If [a] and [b] do not match this way
but they are of the same total size, then component-wise multiplication is done. Otherwise
it’s an error.

Similarly for division. If [b] is square and [a] has the same number of columns, [a] / [b]
means [a] times the inverse matrix of [b]. Otherwise it means componentwise division, if
the sizes are the same.

[a] | 3 takes each entry of [a] modulo 3. If [a] and [b] have the same total size, [a]|[b]
returns each entry of [a] modulo the corresponding entry of [b] (otherwise it’s an error).
Similarly for [a] \ [b] and [a] \ 3 .

2∗[a], or [a]∗2, multiplies every component of [a] by 2. [a]+3 adds 3 to every component
of [a], and so forth. Suppose you want a 4 × 4 square matrix [y] with 7’s on the diagonal
and 1’s everywhere else. Use [y] := Diag[(6, 6, 6, 6)] + 1.

You can add or subtract arrays of the same total size. If they aren’t of the same declared
dimensions, such as adding a 2× 3 to a 3× 2, the result may not be what you thought (try
it).

Array exponentiation is implemented. The syntax is just like scalars, [x]∧n. n must be
a real integer. [x] must be a square matrix. If n is negative, [x] must be invertible.

Other Miscellaneous Array Operations

All arrays can be accessed via the syntax x[number], even if they were declared to be
2 dimensional. This is occasionally useful. For example, if you have an array x[4, 4], x[7]
means x[2, 3]. (Assuming that the array initial index is 1. See the built-in function &a.)

Matrices can be normalized with the built-in functions Normalize and Smith. Their
kernels can be computed with Colreduce and Hermite. See the chapter on built-in functions
for other array built-ins.

Arrays can be “adjoined” or “concatenated” with the operator . The syntax is [z] := [x]
[y]. If two arrays have the same number of columns, the result is as if one array were

put “under” the other. If not but they have the same number of rows, it is as if they
were put next to each other. Otherwise an error results. It is also legal to write [w] := [x]

12, in which case 12 is appended to the end of [x] and a one-dimensional [w] is the
result. Similarly, the scalar could be the first argument. This command is mostly of use for
manipulating strings (see the next chapter on character strings).

There are syntactic restrictions on array expressions that do not apply to scalar expres-
sions. For example, array expressions may not contain unlimited nesting of parentheses.
An expression like x ∗ (x + x ∗ (x + x ∗ (x + x ∗ (x + y)))) may very well produce an error
if x and y are replaced by arrays. Such complex syntax is not necessary. Instead, first set
[d] := [x] + [y], then multiply [x] ∗ [d], etc.

With either syntax [y] := 1/[x] or [y] := [x]∧-1, the inverse of [x] is computed via
Gaussian elimination, modular methods, or the Leverrier-Faddeev algorithm (See example
4, Appendix 3). The various versions of Fermat have heuristics for choosing a method.

33

The Array of Arrays

Fermat does not allow general three-dimensional arrays, but there are times when they
are very convenient. For example, a group may be represented as a set of matrices, and
one would naturally wish to access the ith element of the group as G[i], or something like
that. To provide for this, Fermat has a system wide array of arrays. 400,000 pointers are
provided, each of which can be set to “point to” or “be an alias for” an array that has
already been created in the usual manner. These pointers are accessed by the name %.

Suppose that x[3, 3] and y[2, 2] have been created. To associate the first pointer with
[x] use the command %[1] := [x]. Similarly %[2] := [y] associates the second with [y].
Then %[1][2,2] is the same as x[2, 2], %[2][1,2] is the same as y[1, 2], etc. Note Carefully:
x[2, 2] is not duplicated to become %[1][2,2], rather %[1][2,2] is x[2, 2]. The assignment
%[1][2, 2] := 3 changes x[2, 2].

Note that the array of arrays allows a more general data structure than typical three-
dimensional arrays, because the arrays being indexed are arbitrary.

Until 2011, the pointer %[n] could not appear by itself on the right in an assignment
statement. Of course, an element of an array, such as %[n][k,m] can appear there. In other
words, you can’t do [x] := %[1]. When assigning to a pointer, the right side must be a
simple array name, no expressions and no subarrays.

It is now (2011) possible to assign pointers, as %[1] := %[2]; no storage is moved. This
is good for swapping data. One can also do [c] := [%[1]].

Display and subarray work with array of arrays. Changing the array initial index with
&a affects %. Interrogation from the terminal (the ? command) does not work with %.

Beware of dangling pointers! If %[1] is associated with [x], and then [x] is cancelled,
further use of %[1] will probably crash the system. Perhaps % belongs in the chapter on
“Dangerous Commands”!

Example one in Appendix 3 would have been cleaner using %.

34

Functions

All programming languages have the idea of “procedures” or “subroutines” that perform
specific, often repeated tasks. In Fermat, these are called “functions.”

Every function returns a value, the last expression it computes. (Recall that assignment
statements within functions yield the result 0.) One can also use the Return built-in function
to exit a function with a certain value, as in Return(x).

Unlimited recursion is allowed.

The syntax of a function definition is

Function < left hand side > = < right hand side > .

“Func” may be substituted for “Function.” Note the period at the end.
The left hand side must look like <func name> (x, y, ...) or just <func name>. A <func

name> is a name that starts with a capital letter. The right hand side is explained below
under “The Main Body of the Function.”

The name of a function must begin with a capital letter. The user can redefine a function
F simply by typing a new definition. The function definitions are put on a stack, so any
reference to F is to the topmost. @F destroys the topmost F . @<F > destroys, or purges,
all previous definitions of F . The commands &f, or &F display the current function
definitions. To also see the body of the functions, enter &f∗.

It is recommended that most functions be created in a file with a text editor before
Fermat is invoked (save the file as “text only”). However, it is possible to edit your function
definition from the terminal. You must copy the old function, paste it after the cursor, make
changes there, and then hit <return>. To facilitate this editing, when Fermat displays a
function it adds the continuation character ‘ (upper left key on keyboard) to each line.

The order that the functions are defined (in the input file or the Fermat session) is
completely irrelevant. Of course, if you invoke F and F invokes G, G must have been
defined.

In F (x, y, z, ...), x, y, z, ... are the parameters. When the function is called, the interpreter
evaluates the arguments and puts the parameters on the environment stack with those
values. This mechanism of parameter - argument assignment is called call by value. When
the function ends, those names (and their values) are popped off the stack. This is the
same basic strategy used by APL, Lisp, and other languages, but is unlike Pascal, C, or
Fortran. If you have a variable called x whose value is 3, and then you call a function F
with parameters x, y, while F is executing x means F ’s parameter. When F is finished, its
parameter x is popped off, allowing your original x with value 3 to become visible again.

Fermat allows another kind of parameter - argument correspondence called call by value-
result. Syntactically, a value-result parameter is indicated by putting the exponentiation
sign ˆ in front of the name in the parameter list of the function, as in F (x, ∧y). The
argument passed to y must be a single variable name, not an expression. This provides a
mechanism for allowing the changes made to y to survive the termination of F . Suppose
you invoke F with F (3, z). Then as the parameters are matched with their arguments, y
gets z’s value. As the function executes, any change to y, such as y := y + 1, is done only
to y. When the function ends, z gets y’s value. (Therefore, you must not have cancelled z,

35

although Fermat should be able to catch this mistake.) For more information, consult any
text on the theory of programming languages.

In Fermat, the same syntax in some built-in functions implements call-by-reference. For
example, time and compare Terms(x) and Terms(ˆx) for a large x.

Local Variables

A parameter not matched by an argument when the function is called becomes a local
variable with initial value 0. For example, if you define F (x, y, z) and invoke F with F (a, b+
c), z is initialized to 0 and cancelled when F ends. In the meantime, z is on the environment
stack, suppressing or hiding any earlier z’s. Any function that F calls has automatic access
to z, as long as it (or some other function) doesn’t create another z.

If z is a value-result parameter, it must be matched with an argument at function
invocation time, and so cannot become a local variable.

The Main Body of the Function

The right hand side of a function (abbreviated < r.h.s. >) is either an expression, an
assignment, an array expression, a for-loop, a while-loop, an if-statement, or a sequence
of these separated with semicolons. The function definition ends with a period. The only
other places were periods are allowed in a function definition are inside literals and inside
comments.

If-Statements

The syntax of an if-statement is

if <condition> then <r.h.s.> [else <r.h.s.>] fi

where the first alternative is chosen if the condition is true, and the second (optional)
alternative if it is false. Note the reserved word “fi”. This if-fi syntax originated in Algol68.
If the second is absent and the condition is false, nothing happens – it’s as if the statement
were not there (except for possible side effects introduced by the evaluation of the condition).

There are two ways to form a < condition >. The first is simply to provide any
expression. If the expression evaluates to 1, that’s interpreted as true; anything else is false.
You can set a variable, say, condition to 1, and write loops like

while condition do . . .

Secondly, (and more conventionally) define a simple condition as:

<expression> <, =, >, >=, <=, or <>, <expression>

Simple conditions can be combined to form a condition with the Boolean connectives and,
or, and not, such as:

if i > 3 or x < 4 then

While-Loops

The syntax of a while-loop is

36

while <condition> do <r.h.s.> od

Note the “od.” The condition is evaluated, and, if true, the loop is entered. At the end
of the statement(s) in the loop, the condition is evaluated again, and, if true, the loop is
entered again. This pattern repeats until the condition is false.

For-Loops

The syntax of a for-loop is

for <var name> = <expression>, <expression> do <r.h.s.> od

or

for <var name> = <expression>, <expression>, <expression> do <r.h.s.> od

or

for <var name> from <expression> to <expression> do <r.h.s.> od

or

for <varname> from <expression> to <expression> by <expression> do <r.h.s.> od

The first two expressions are the initial and final values for the index variable. The
optional third expression is the size of the increment. It can be negative. At the beginning
of the loop, these three expressions are evaluated and truncated to integers, if necessary.
The resulting integer in all three cases must be less than 228 in absolute value. After
each pass, the index variable is incremented. If it exceeds (or is less than, for a negative
increment) the terminating value, the loop is over. After the conclusion of the for-loop, the
index variable has value one more than the terminating value (or one less if the increment
was negative). It is possible for the “< r.h.s. >” to contain a statement that (apparently)
changes the index variable. This confusing practice should be avoided. It may cause a
crash.

The words if, then, else, for, while, do, from, by, fi, and od are key words and should
not be used for any other purpose inside functions.

Early Termination of Loops

Fermat has no “goto” statement; instead there is a “leave loop” command &>, a “cycle”
command &], and an “exit function” command &}. “Leave loop” and “exit function” are
self-explanatory. The cycle command causes Fermat to skip the remaining statements in
the loop body and return to the condition or incrementation heading the loop.

Note that the leave loop command &> is independent of function structure. That is,
if F calls G and &> appears in G after any loop in G, then upon return to F , the first
loop that Fermat enters (or had entered) will be immediately exited. In general, &> forces
immediate termination of the next (or present) loop that Fermat enters (or has entered).

37

Examples

F (x) = if x < 0 then − x else x fi.

is absolute value.

W (n) = if n < 2 then 1 else n ∗W (n− 1) fi.

is the factorial function.

G(n; i, s) = s := 1; for i = 1, n do s := s ∗ i od; s.

is also n factorial. A typical call to G would be G(6), in which i and s are unmatched
parameters. That’s fine - they are initialized to 0. The semicolon in the parameter list is
just for the convenience of the user, to separate the real parameters from the local variables.
A comma would have sufficed. (Of course, the built-in absolute value and factorial functions
would execute far more quickly.)

Sparse Access Loops

There is a need for a way to work efficiently with sparse arrays. For example, suppose
you have a sparse array of 60000 rows and 50000 columns with only 10 or so entries in each
row (this is quite realistic). Suppose you wanted to add up all the entries. Naively, one
could write something like:

for i = 1, 60000 do for j = 1, 50000 do sum := sum+ x[i, j] od od
But this will do 3,000,000,000 additions, almost all of which are adding 0! This is a

preposterous waste of time. The solution is “sparse column access loops” for sparse arrays.
The syntax is, continuing the example above,

for i = 1, 60000 do for j = [x]i do sum := sum+ x[i, j] od od.
“for j = [x]i do” means find the ith row of [x] and let j run down it – of course encoun-

tering only the entries actually there! So j takes on whatever the column indices are in
which x[i, j] 6= 0. [x] must be an existing sparse array, and i must have a value suitable for
[x] at the start of the loop. More generally, one may use the syntax: for j = [x]i,k do
Here i and k both refer to rows of the sparse matrix [x]. At the start of the loop, all nonzero
column coords in both rows are found. Then as the loop proceeds, j runs through those
values in order. Any number of row indices is allowed. There is no analogous procedure for
“sparse row loops” due to the way Fermat stores sparse matrices. If necessary, transpose
the matrix.

Arrays as parameters and arguments

F (x, n; i, s) = for i = 1, n do s := s+ x[i] od; s.

adds up the first n elements of array [x]. A typical call would be F ([a], 20). Notice how to
pass an array argument. (The same function could be accomplished much faster with the
built-in Sumup or Sigma functions.)

38

Comments

Comments within functions are implemented with the curly brackets { and }. Any
character string is allowed between them, but note that the first } terminates the
comment. A comment may extend over more than one line. When editing a function
definition on the screen, a multiline comment does not need to be terminated with the
continuation character. Indeed, if it is, something different will result – try it. It is possible
to have literals (quoted strings) inside comments and visa-versa, but this very confusing
practice should be avoided.

The best practice is to devote an entire line to a comment. However, it is possible to
use less – for example, a comment may be placed between the end of an expression and
the semicolon at the end of the line. But – do not place a comment immediately
before the period terminating a function. In particular, one cannot have a function
consist only of comments. A comment is not a statement, so do not place a semicolon after
a comment.

One can also have comments of a different sort placed anywhere in an input file (between
function definitions, for example) for documentation. Start such a line with a semicolon,
such as:

; This is the factorial function.

W (n) = if n < 2 then . . .

Having seen a semicolon, the interpreter simply skips over such a line when reading the
input file. Therefore there is no way within the Fermat session to read these comments.

More on Arrays as Parameters

Scalar parameters are evaluated at the time of call and their values put on the envi-
ronment stack. This is “call by value”. But array parameters are not passed that way –
it would be too wasteful of both time and space. Instead arrays are passed “by reference”.
This implies, first of all, that the argument must be simply an array name, not an array
expression, and secondly, that any change made by the function to its parameter will survive
the termination of the function; i.e., it will really change the argument.

A subtle problem sometimes arises in passing arrays as parameters to functions. If the
function is changing an array, sometimes the size of the output array is not known before
the function call. For example, a function Add could be written to add two polynomials
represented as arrays of coefficients. The size of the answer could be much smaller than that
of either of the input arguments because of terms adding to zero. The caller wants to write
Add([x], [y], [z]), meaning [z] is to be set to the sum of [x] and [y]. The [z] existing at that
moment may be of inappropriate size, yet the calling function must be written assuming
the name of the sum is [z]. A solution is to have the function Add create the array [z], and
have the caller know this. But then the problem is what to do about repeated calls to Add
(in a loop, say), especially when this [z] is later passed as one of the inputs to a different
invocation of Add. To provide an efficient way out of this, Fermat has a change of array
name feature. The command Rname[c] :=′ [z]′ will change the name of array [c] to [z]. The
solution to the above problem is to have the function Add create an array [c] to store the
sum. Then the caller of Add changes the name to [z].

39

You cannot cancel an array parameter. (There is one arcane exception to this –
if you somehow find yourself in the lowest command level with array parameters still on
the list of currently active names, you can and should delete them. This situation is barely
possible.) If you cancel within a function the argument that an array parameter is matched
with, the argument will indeed be cancelled, but in the course of bookkeeping its symbol
table, Fermat will notice that the array parameter is now referring to nothing. An error
will be generated. If you had not set the command &e, everything will be fine after the
error. But if you had set &e, then in the new level of the command language you must do
a panic stop &@ immediately, else Fermat may crash.

You cannot change the name of an array parameter. You can change the name of some
other array to that of an array parameter. This is a bizarre thing to do, especially since
at the end of the function’s execution, Fermat pops off all the array parameter names, so
access to the genuine arrays’s name is lost.

As one can see from the above paragraphs, array name changing and array cancelling
must be done carefully, especially inside functions. For these reasons, I do not recommend
using the purge-array command inside a function.

The System Function

Just as there is a system variable (<) and a system array([<]), there is a system function.
One frequently wishes to write a loop to compute something, for example,

for i = −4n, 4n do Myproc(i/n, n/i) od

One could certainly give this a name and make it the body of an ordinary function, but
often one would like to not have to bother with that, hence the system function concept,
whereby one can simply enter the loop on the terminal. As soon as the line is entered, the
loop is executed. Furthermore, the function has been stored and can be executed again by
entering the name of the system function, <F.

The system function can consist of only one loop or if-statement.

No function can call <F.

40

41

Arithmetic Modes (Ground Rings)

Two arithmetic modes are possible in Fermat, rational arithmetic and modular. (In
other words, the ground ring is either the integers ZZ, ZZ/n, or a finite field GF(2n) for
n = 8, 16.)

A session with Fermat starts in rational mode. All arithmetic is that of rational numbers:
to add you get a lowest common denominator, etc.

Changing Modes – Ground Rings

To leave rational mode and enter modular mode, the command is &p. The interpreter

will display the message “Changing arithmetic mode” and will wait for the user to enter
an integer n which will become the modulus. n must be at least 2 and no more than
231 − 1 = 2147483629 (Linux, Unix, OSX) or 92000099 (Windows). Arithmetic will be
slightly faster if n is no more than 216− 1 = 65535. The current values on the environment

stack will be converted as follows: for the rational number x = r/s, compute r mod n, then
s mod n, then divide the two by inverting s. If s is not invertible mod n, x will be set to 0
and a warning printed.

If you enter 256 or 65536, the ground ring will becomeGF (28) orGF (216). See Appendix
Five.

To change back to rational mode, just enter &p again. You can change back and forth
as often as you wish.

If you enter a constant from the keyboard in modular mode, it will be reduced modulo
the modulus.

It is possible to temporarily turn off modular arithmetic in modular mode. This is useful
for the following reason. Suppose you want a loop in a function to execute m times and
you write

for i = 1,m do . . .

Suppose m should be 2 more than the size of some array [y], so you write m := Deg[y] + 2 .
But the addition will be done modulo n and may well give a result that is too small. To
overcome this difficulty, enter the command & m , then assign m, then switch back by
again entering & m. While the loop is running, if you refer to i in a Fermat expression, it
will return its value mod n. Meanwhile, m really contains a technically illegal value – use
it in a computation only with care.

The variant form & m(< expression >), or just (...), turns modular mode off, com-
putes the expression, then restores modular mode.

Never do modular arithmetic, especially multiplication, with outsized values
that have been created with & m. (They may be used in arithmetic that is enclosed
by & m.) At the very least garbage will be introduced. The machine may crash. When
modular mode is in effect, use these values only for special purposes, such as to control
loops.

42

However, it is permissible and sometimes convenient to set a variable equal to the
modulus, such as mod := & m(. . .). Constructions of the form x|mod are legal in modular
mode.

Don’t make the mistake of inadvertently turning modular mode on when you thought
you were turning it off. For example, if you are in modular mode with modulus 7 and wish
to access entry 7 in array x, the well intentioned command x[& m(7)] will fail, because
Fermat automatically turns modular mode off when it computes array coordinates. You
inadvertently turned it back on.

A message of acknowledgement will be printed if you execute & m from the keyboard,
but not if it is executed inside a function.

Disabling modular mode in this way creates a small problem for saving and loading. If
a variable is saved with a value of, say, −5, and the file later read during modular mode, the
−5 will not be loaded, rather it will be reduced modulo the modulus. However, modular
arithmetic may be disabled during polynomial read-in, so a polynomial with negative or
outsized coefficients will be read as is. See below “polynomial read-in” and &n.

Mode Conversion Automatically Stored

If you are in modular mode when you save to output, the command

&(p = <modulus>)

with the correct number will be inserted in the file. Thus, in a later session, when you read
that file, conversion to modular mode will be done automatically. Of course, if you wish,
you may insert this command yourself in an input file. The syntax is &(p = <modulus>)
. When the file is read, the expression <modulus> will be evaluated.

Fast, Selective Mode Conversion

This is one of the “Dangerous Commands.” See that later chapter.

43

Polynomials

Having chosen an arithmetic mode, the user may change the ground field (or ring) by
converting it into a polynomial ring. This is done by adjoining variables – as many as
desired – that remain unevaluated. The names of these variables follow the usual rules of
variable names in Fermat. To adjoin the variable “t”, enter the adjoin polynomial command,
&J. You will be prompted for the name of the variable. Variables added later have higher
precedence than those earlier. Among other things, this means that if you adjoin t and then
u, the polynomial u ∗ t is displayed as (t)u, not (u)t.

To place this command in an input file, use the imperative form &(J = t). If you have
attached this polynomial variable and later enter the save command, the command &(J =
t) will be automatically included in the saved file. Repeat for other variables. A variable

name can be read from an array, just as the name of a file can be read from an array during
read and save commands. This allows the easy creation of many names. For example, to
create variables x1, x2, x3, ..., x9, set an array, say [x] equal to ’x ’ (note the blank). Then
write a loop for i = 1,9 do x[2] := i+48; &(J = [x]) od. (The rather puzzling “48” converts
integers to ASCII.)

The polynomial variable t can be dropped or cancelled by entering &J , followed by −t.
A name once chosen for a polynomial variable cannot be used for any other purpose. If a

variable previously existed called “t”, it will be inaccessible.
Using &J adjoins new variables “above” the previous ones. However, as of January 2009,

it is possible to adjoin a polynomial variable “at the bottom.” So if, say, x and y exist, y
later or “above” x, one can do &(J>z), which will insert z as the lowest variable (below x)
rather than the highest. You cannot cancel from the botttom.

Exponents must be at least 0, unless the Laurent option has been chosen – see that
chapter for more information. In any case, they must have absolute value less than 228.
(Technically, an exponent can be up to 231 − 1, but Fermat will not let you directly assign
an exponent larger than 228 − 1.)

Producing an exponent larger than 231 by multiplication or exponentiation will probably
not result in an error message. But later results will be garbage!

Letting F denote the ground ring, suppose variables have been adjoined to create the
polynomial ring F [t, u, v, . . .]. Arithmetic is done in the obvious way, with the ordinary signs
+,−, ∗, ˆ . The div operator \ and the mod operator | work about as one would expect,
at least if there is only one variable. Division, using / as in x/y, reduces the quotient by
dividing out the greatest common divisor of the two polynomials. The result may be a
polynomial, if y divides evenly into x, or, more likely, will be an element of the quotient
field F (t, u, v, . . .). Such elements are called quolynomials, and are written as fractions or
quotients of polynomials. This topic is discussed in greater detail in the following chapter.
There is one mathematical complication. In modular mode, F might not be an integral
domain. Then neither is F [t, u, v, . . .]. Therefore, there is no quotient field, and writing
quotients of polynomials is a bit of a sham. Fermat basically ignores this. When division
is indicated, the same g.c.d. algorithms are invoked as in the field F case. Fermat leaves it
to the user to make sure that the results computed have any meaning. Even more trouble
occurs when polymods are used with division. See the later chapter on “Polymods.”

44

The operator “div”, \ is essentially obvious when applied to single variable polynomials,
but not to multivariable ones. For in that case, there is no division, there is only pseudo-
division. (See any text on abstract algebra, or Knuth volume 2.) Fermat will yield the
result of pseudo-division in this case. Similarly, “mod”, |, returns the pseudo-remainder.
Ideally, x\y = q and x|y = r mean ckx = qy + r, where c = the leading coefficient of y and
k ≥ 0 is an integer. (Fermat adopts the convention that k = deg(x)− deg(y)+1.) However,
if y is at a lower level than x, the equation ckx = qy + r will probably fail because y is
divided into each coefficient of x and a different k will probably arise in each case.

Polynomial Built-in Functions

Many of the built-in functions cannot be given polynomials of positive degree. Those
that can, like greatest integer, work upon all the coefficients.

There is a special operator for polynomial evaluation, denoted #. Suppose first that
only one polynomial variable, say t, exists. Then x # y replaces every occurrence of t in x
with y. For example, if x = t3 + 3t2 + 3t + 1, then x # 2 = 27. y can be any expression
evaluating to a polynomial.

If several polynomial variables exist, then x # y replaces the top-most polynomial
variable in x with y, i.e., the latest created. To replace one of the other variables, say u, use
the alternate form x # (u = y). The name of any polynomial variable may be used instead
of u, and any expression may be used for y.

A fast shortcut form of evaluation called total evaluation exists. To evaluate x at every
variable, use the syntax x # (v1, v2, . . .), where all the vi are numbers. There must be
a number corresponding to each polynomial variable, in the precedence order – highest
precedence (last attached) listed first. The following more general syntax is also allowed.
Suppose there are five poly vars, e, d, c, b, a in that order (e last and highest). Then q #
(d = w, x, y) will replace each d in q with w, each c with x, each b with y. e and a are
untouched. Further, w, x, and y can be arbitrary quolynomials. Similarly if [t] is an array,
q # (d = [t]) replaces the variables from d on down with the entries of [t] in column major
order until [t] is used up. It is an error if [t] has too many entries.

Fermat has a built-in function for polynomial coefficients. Syntax of use is Coef(x, n),
or Coef(x, n1, n2, . . .) if several polynomial variables have been adjoined. x can be any
expression. The ni must be numbers. In modular mode, modular arithmetic is ignored
while the ni are evaluated.

There is a built-in function to compute the degree of a polynomial, using the symbol Deg.
Syntax: Deg x (note space) or Deg(x, i). In the second form, the i names the ith polynomial
variable. Deg(x) returns the largest exponent within x of the specified polynomial variable.
If no specification is given, the highest precedence variable is assumed. In modular mode,
it returns an actual integer, not reduced modulo the modulus.

Similarly, there is a built-in function to compute the “codegree” of a polynomial, using
Codeg. It returns the smallest exponent of the specified polynomial variable. Syntax as
with Deg.

There is a built-in function to compute the leading term of a polynomial, using the
Lterm. Follow it with the expression whose leading term is to be computed. By definition,
the leading term of a polynomial is coef ∗ un where u is the variable of highest precedence,
n is the highest degree, and coef is the coefficient of un.

45

Fermat has a built-in function to compute the derivative of a polynomial, using the
symbol ”. Precede it with the expression whose derivative is to be computed, such as x”.
Differentiation is with respect to the variable of highest precedence.

There is a function Remquot to return the (pseudo)remainder (r, say) of dividing d into
x and the (pseudo)quotient, q. ckx = qd + r, where c is the leading coefficient of d and
k = deg(x)− deg(d) + 1 (unless d is a number or c is invertible; then k = 0).

There are functions Factor, Sqfree, and Irred to factor one variable polynomials and test
for irreducibility. These are described in detail below.

See the earlier chapter on built-in functions for descriptions of Level, Height, Raise,
Lower, Lcoef, Content, and Numcon.

Polynomial Read-in

Fermat has a feature that facilitates the reading of large polynomial constants, the
polynomial read-in, & n. It is used by simply putting & n in front of a polynomial constant
that is written out fully following Fermat’s conventions.

Example:
y := & n (5t2 + 2t+ 1)u2 + (3t− 1)u+ 7t2 − 3t+ 1

where the two polynomial variables t and u have been attached in that order (u has higher
precedence, but there could be polynomial variables between them).

The point of this feature is speed. If the & n is omitted in the above example, Fermat
will square t, multiply by 5, multiply 2 times t, add to the previous result 5t2, then add 1,
then square u, then multiply by the previous result, etc. – in other words, it will evaluate
the expression “normally.” But since the expression is written in the canonical order, y can
be pieced together without any calls to addition or multiplication at all. The & n signals
Fermat to expect the canonical order and simply “attach” the terms as they come to y.
This provides a very large saving of time, which is very noticeable even for polynomials of
moderate size.

The canonical order is that of decreasing exponents, no zero exponents, coefficients writ-
ten first in each term, and nesting according to the precedence of the polynomial variables.
There must be no spurious parentheses, no multiplication signs ∗, no division /, no extra
plus signs, like +7t− 3, and no 0’s (as stand-alone constants). There must be no variables
or any other built-in functions. Here is another example:

s := & n v3 + (3u − 2t + 3)v2 + (3u2 + (−4t + 6)u + 4t2 − 4t + 6)v + u3 + (−2t + 3)u2 +
(4t2 + 4t+ 6)u− 7t3 + 4t2 − 4t− 2

If you are unsure of some of the fine points of canonical form, create some polynomials
and watch how Fermat displays them.

During polynomial read-in in modular mode, one sometimes wants modular arithmetic
disabled. One may want the read command to load correctly (i.e, as is) data that was
created when modular mode was off. Note, however, that non-polynomial data of that type
will not be read “correctly.” On the other hand one may indeed want the coefficients to be
modded out. The toggle switch &n allows the user to choose.

46

You can pretty much ignore polynomial read-in, especially if you use only one polynomial
variable and have no polynomials of more than 15 or 20 terms. However, Fermat will often
insert it in saved files and on the screen when it dumps a list of variables, so you must at
least be aware of its existence.

Factoring Polynomials

Fermat allows the factoring of one or two variable polynomials over any finite field.
The finite field is created by simply being in modular mode over a prime modulus, be-
ing in GF (28) or GF (216), or by additionally modding out by irreducible polynomials to
form a more complex finite field, as described in the later section “Polymods.” Factoring
into irreducibles or square-free polynomials is possible, or polynomials can be checked for
irreducibility. Square-free factoring applies to more general ground rings, not just finite
fields.

Pre 2023: For factoring, the syntax is Factor(< poly >, [x]) or Factor(< poly >, [x], <
level >). The factors of < poly > will be deposited into an array [x] having two columns
and as many rows as necessary. (The number of factors (rows) is returned as the value of
Factor.) In each row, the first entry is an irreducible polynomial p(t) and the second is the
largest exponent e such that p(t)e divides < poly >.

Post 2023: The above paragraph applies to one-variable polynomials. For two-variable,
often only one factor is returned. Factor doesn’t work for more than two.

In the second form, < level > specifies the subfield to factor over. For example, suppose
over the prime p = 30203 two polynomial variables t and u have been attached, and the
irreducible polynomial t4 + t3 + t2 + t+ 1 has been modded out to form the field of order p4.
Then Factor(u12 + 1, [x], 0) returns six quadratic irreducible factors – irreducible over Fp.
So setting level = 0 suppresses the existence of the field of order p4. Factor(u12 + 1, [x], 1)
produces a factorization over the ground ring Fp plus the first modded-out polynomial, i.e.
the field of order p4. The result is twelve irreducible factors involving t. Note that the same
twelve factors could be attained much more rapidly by factoring each of the six quadratics
obtained at level 0. Similarly, if now a further field extension is created by modding out
on u, the most efficient way to factor is level-by-level, to the extent possible. It is therefore
best for factoring to use as many variables t, u, ... as possible in creating the field.

Sqfree is like Factor except it produces factors that are square-free only, and can be done
over more general ground rings.

Pre 2023: Irred tells if its argument is irreducible, and, if not, describes the factorization.
Syntax is Irred(< poly >) or Irred(< poly >,< level >) (“level” is explained above). The
value returned is as follows:

-1 means can’t decide (too many variables, for instance).
0 means the argument is a number or is a field element.
1 means irreducible.
n > 1 means the argument is the product of n distinct irreducibles of the same degree

(and is therefore not irreducible).
x, a poly, means x is a factor of the argument (which is therefore not irreducible).

Fermat uses the algorithms of Cohen, “A Course in Computational Number Theory,”
Springer Verlag, 1993, pages 123-130. There is some randomness in these algorithms, so

47

the time it takes to factor a given example can vary.
Post 2023: Irred applies to any polynomial over any ground ring. It uses the idea of von

zur Gathen to use linear substitutions to reduce to a two-variable poly over a finite field.
0 means the argument is a number or is a field element.
1 means irreducible.
x, a poly, means not irreducible. x is probably not a factor (it will be for a one variable

poly), rather it is a factor of the reduced two-variable poly. Its form may be of use to
indicate the form of an actual factor.

Irred sometimes has trouble with difficult cases over Z, such as Irred(x4 + y4). It may
report reducible when it is not!

There is now a file of functions called factr available on the Fermat website that imple-
ments Wans method of factoring multivariable polys. See D. Wan, Factoring multivariate
polynomials over large finite fields. Mathematics of Computation volume 54. number 190,
April 1990, pages 755-770.

The function FCTZ in that file returns -1 when given x4 + y4. Technically -1 means
can’t decide, but it usually, in fact, means irreducible.

48

Quolynomials

Letting F denote the ground ring, suppose variables have been adjoined to create the
polynomial ring F [t, u, v, . . .]. Division, using / as in x/y, reduces the quotient by dividing
out the greatest common divisor of the two polynomials. The result may be a polynomial, if
y divides evenly into x, or, more likely, will be an element of the quotient field F (t, u, v, . . .).
Such elements are called quolynomials, and are written as fractions or quotients of polyno-
mials. Fermat automatically creates quolynomials whenever it is necessary.

Basic arithmetic of quolynomials is essentially obvious to anyone who remembers high
school algebra.

There are three mathematical complications. Over a modular ring Z/n (“modular
mode”), F might not be an integral domain. Then neither is F [t, u, v, . . .]. Therefore,
there is no quotient field, and writing quotients of polynomials is a sham. Fermat basically
ignores this. Certainly these polynomials can be added, subtracted, and multiplied with no
problem. When division is indicated, there may or may not be an immediate problem. For
example, 1/(2t + 2) will cause an error message if F = ZZ4, because 2 is not invertible in
F . If some computation f/g does not cause this problem, the same g.c.d. algorithms are
invoked as in the field F case. Fermat leaves it to the user to make sure that the results
computed have any meaning.

Secondly, a similar problem arises when polynomials p, q, r, . . . are used to mod out
and form the quotient ring F [t, u, v, . . .] / < p, q, r, . . . > of polymods. If the polynomials
p, q, r, . . . are not all irreducible, then this ring is not a field, and dividing and forming
quolynomials is a sham. Fermat will not stop you from trying to do this, and there is no
guarantee of the results. In particular, there will no longer be canonical forms, i.e., different
looking expressions may in fact be equal. If they are subtracted, the result may or may not
be an honest zero. The following chapter describes polymods.

Div and mod applied to quolynomials act only on the numerators.

There are built-in functions Numer and Denom that return the numerator and de-
nominator of a quoly. The built-in function degree Deg returns the difference between the
degrees of the numerator and denominator. Leading coefficient Coef ignores any denomi-
nator. Leading term Lterm produces an error if called on a non-polynomial.

49

Polymods

Choosing an arithmetic mode establishes the ground ring F . On top of this may be
attached any number of unevaluated variables t, u, . . ., thereby creating the polynomial ring
F [t, u, . . .] and its quotient field, the field of rational functions or quolynomials. Further,
certain polynomials p, q, . . . can be chosen to mod out with, creating the quotient ring
F [t, u, . . .] / < p, q, . . . >, whose elements are called polymods, and, implicitly, quolymods,
which are expressed as quotients of polynomials, superficially the same as ordinary quoly-
nomials. If the polynomial p involves the variable t, we say that t has a relation imposed
on it.

For example, in rational mode, F [t] / < t2 + 1 > is the mathematical ring ZZ(i), with t
playing the role of

√
−1.

The basic command to mod out by a polynomial is &P. You will be prompted for the
quotient polynomial, which must be monic, say tn + c1t

n−1 + The imperative form of
this command is &(P = tn + c1t

n−1 + . . .).

Ideally this command should be given in rational mode (i.e., over Z). It is OK to give it
in modular mode, but then one cannot change to rational.

In principle, any monic polynomial may be modded out, say tn + c1t
n−1 + However,

Fermat is best at the case where the quotient ring becomes a field (note well, QQ[t, u, . . .] / <
p, q, . . . > is a field, ZZ[t, u, . . .] / < p, q, . . . > is not). Specifically, suppose the polynomial
variables have been attached in the temporal sequence t, u, v, Begin by modding out a
monic irreducible polynomial p(t) such that F1 = ZZ[t]/ < p > is an integral domain, and
its field of fractions is QQ[t]/ < p >. Then, if desired, mod out by a monic polynomial q(u, t)
such that F2 = F1[u]/ < q > is an integral domain, and continue in this manner always
creating an integral domain, and, by the same stroke, its field of fractions.

You must tell Fermat that a field will result, and it is your responsibility to check this.
Do this at each step by adding a comma and 1, as &(P = tn + c1t

n−1 + . . ., 1). In Fermat,
you may append a list of primes q such that the modder p(t) remains irreducible mod q.
For example, &(P = t3 + t2 + t + 2, 1 : 151, 167, 191, 839, 859, 863, 907, 911, 991). Add as
many as you like, at least 30 is desirable. Or, probably better, omit the list and Fermat
will compute it for you. (If you save the session to a file, Fermat will include the list in the
saved file and just reload it next time.) Fermat then computes a second list of auxiliary
primes of a different sort: modulo these primes the modding polynomial has a root. Both
types of primes are used to speed up g.c.d. computations. If Fermat cannot find enough of
either type, it will instruct you how to get more, using the commands &A and &B.

When you have implemented a field in the above manner, division is done correctly. For
example, with the above p(t), 1/t2 is computed as (t2 − t − 1)/4, which is correct. If you
have not told Fermat that a field results, 1/t2 is left as 1/t2. Whether this has any meaning
is, of course, your problem.

To later rescind modding out on t, enter &P again and then −t. To change the modding
polynomial to another, you must first rescind the current one.

Note that polynomial evaluation (substitution) of a variable involved in a modding
relation is not a homomorphism, and may not make sense. This is the user’s responsibility.

50

If a field has been formed in this way, one can drop into modularmode mod any prime
such that the modding polynomials remain irreducible. It is the user’s responsibility to
check this.

To create a poly variable and mod by it all at once do, for example, &(J = t, P =
t2 + 1, 1). This is more efficient than two separate commands – indeed it can be much more
efficient if a lot of data exists.

Trefoil knot viewed from an interesting angle.

51

Laurent Polynomials

In Fermat a Laurent polynomial is one with negative exponents. If you wish to allow
this, activate the toggle switch &l. All of the variables you have created up to that point
will be converted to the new format. For example, 1/(t2 + 2t) will become t−1/(t + 2).
No negative exponents are left in the denominator of a quolynomial and all positives are
factored out and moved to the numerator.

Unlike polymods, Laurent polynomials present no inherent mathematical difficulty. Be
aware that in Laurent mode, the function GCD treats variables t as invertibles, and always
presents answers with no negative exponents.

Laurent mode should be used if you expect a fair amount of results to have denominators
that a variable could be factored out of. If a matrix has several entries such as 1/t, use this
mode to compute its determinant or inverse.

Laurent polynomials implement computations in the group ring ZZ(ZZ).

52

Character Strings

Fermat allows the assignment of characters to scalar variables and character strings or
literals to arrays. In the first case the syntax is y := ′a ′ to assign the character ′a ′ to
the variable y. In the second case the syntax is [x] := ′sample ′. (Use the single quote, or
apostrophe.)

What actually happens is that y gets the ASCII code of ′a ′. It is still therefore “really”
a number. If one simply types y or ′a ′, the ASCII code is displayed. (This works in all
arithmetic modes. In modular mode the result will not be reduced modulo the modulus.)
To see the character ‘a’ instead, use the display command !(y : char). Note the reserved
word char.

Strings are more useful than characters, for which one needs arrays. If the user first
creates an array [x] of size, say, six, and then enters the command [x] := ′sample ′, each
character is stored in the six slots of [x]. Entering ![x will display the ASCII codes of the six
letters. To see the letters, one needs the char attribute, the syntax of which is ![x : char.
(Note that this is array short form.) In the above example, this will produce the original
string sample. A spacing attribute can be added, as in ![x : char : n , which places each
character in the left of a field n units wide. Compare the display command form, !([x :
char). One can also use array long form ![x]: char, which produces one character per line,
or !([x]: char). Try them both.

Array features discussed in earlier chapters enable one to work with substrings, con-
catenate, find the length of a string, etc. For example, to concatenate a string stored in
[x] with a string stored in [y], enter [z] := [x] [y]. (This could also be executed more
cumbersomely with subarrays.)

Character strings can easily be read into an array. The command is ?[a] : char , which
will display on the next line > [a] := ′ . Note the prompt > and single quote. The user
then enters any character string followed by the single quote and hits return. Then array
[a] gets the ASCII codes for the characters.

There are various fine points, which are here explained:

(1) If the array [x] has some undefined elements, they will appear as ′ ∗ ′ upon execution
of ![x : char. Note the space after the ∗.

(2) If [x] has not yet been created, [x] := ′sample ′ creates a 1×6 array x[1, 6], not an array
x[6]. Predefining [x] as one-dimensional x[6] solves the problem (see “array assignments”
above).

(3) The command to display as a character string can be given to any array. Values which
do not correspond to legal ASCII codes will result in the printing of a blank or of a little
square box.

(4) These two are equivalent: [x] := ′abc′ and [x] := [(′a ′, ′b ′, ′c ′)].

(5) When typing from the terminal, the continuation character ‘ should not be in a literal.
For comparison, enter these two statements:

[x] := ′abc

53

def ′

and

[y] := ′abc

def ′.

(Both will have to be selected with the mouse and then entered.) Then display each as
a character string.

(6) Displaying a two-dimensional array x[n,m] as a character string produces n rows of
length m character strings.

(7) Constants like ′e ′ have a somewhat ambiguous existence in Fermat – are they scalars or
arrays? If you simply enter ′e ′, the ASCII code for the letter e will be displayed, so it seems
to be a scalar. If you enter [x] := ′e′ you will get a 1×1 array. If you enter [w] := ′e ′ [x].
where [x] is any array, the ′e ′ will be treated as a scalar, so [w] will be a one dimensional
array with first character e.

54

More Built-in Functions

Divides is implemented in Fermat. Syntax is Divides(n,m) or Divides(n,m, q). Does n
divide evenly into m? n and m may not have denominators. As always, 0 means false,
1 means true. If q is present, the quotient will be returned if Divides is true. Various
time-saving ideas based on homomorphisms are used.

PDivides(n,m) also asks if n divides evenly into m. The strategy is to substitute each
polynomial variable except the highest with a constant. PDivides says true iff these reduced
polynomials divide evenly. The constants are chosen with some care. Nonetheless, this is a
probabalistic algorithm. An answer of False is always correct, but an answer of True has an
infinitesimal probability of being wrong. SDivide(n,m) is similar but faster; see Appendix
4.

Irred, Factor, and Sqfree are available and are described in the Polynomial chapter and in
Appendix 4.

Powermod(x, n,m) computes xn mod m. x must be a polynomial or integer, n must be a
positive integer, and m must be a monic polynomial or positive integer. You may omit the
third argument if you are in modular mode or polymodding. Note that n often needs to
be very large. In modular mode, this is a problem. The solution is that n must be either
a constant or must involve only variables that have been created in rational mode while
under “Selective Mode Conversion” – see that topic under “The Dangerous Commands.”
Otherwise Fermat will crash.

Adjoint[x] is the adjoint of matrix [x].

PRoot(x) returns the pth root of x, when x ∈ the ground ring, a field of characteristic p.

Totdeg(x, [a], n) returns the largest and smallest total degrees of the monomials in x . See
Appendix Four.

WDeg(x, [a], n) “withdraws” the subpolynomial of x of total degree n in the variables listed
by [a]. See Appendix Four.

In Fermat GCD(x, y) for polynomials is sophisticated. Hensel’s Lemma and the Chinese
Remainder Theorem are used for GCD(x, y). These techniques provide orders of magnitude
improvements in speed when x and y are multivariate.

If x is a rational function (“quolynomial”) and y a polynomial, then x|y will mod out the
numerator and denominator of x by y, then form the quotient. This may not be reasonable
mathematically – that’s the user’s problem.

Rat(x) returns 1 if the expression x is rational but not integral, otherwise it returns 0.
LCM([x]) computes the least common multiple of all the denominators in matrix [x]. “De-
nominators” means those of rational numbers or of expressions like (t2+3t+1)/17 or 3/(2t).
The denominator of 2/(3 + 2t) is ignored, since you can’t clear it by multiplying [x] by any
number (except 0!).

Fermat has an interpreter command &H, with imperative form &(H = . . .) to affect the
display of constants in modular mode. When turned on, modular numbers will be displayed
in the form −m,−m + 1, . . . , 0, 1, . . . , n where m = (modulus−1) div 2 and n = modulus
div 2.

Deriv(x, t, n) returns the nth derivative of x with respect to t. x is any (scalar) expression,
t is a polynomial variable, and n ≥ 0.

55

In Fermat, with the degree-of-polynomial function Deg there is a difference between Deg
x and Deg(x). The second form (where x can be any expression) is slower because it will
spend time duplicating x before it computes the degree. In the first form, x must be a
variable name.

The Characteristic Polynomial

Chpoly computes the characteristic polynomial of a square matrix, in terms of the poly-
nomial variable of highest precedence. The syntax of the command and the method used
depends on whether the matrix is sparse or “ordinary.”

With the ordinary matrix storage scheme, LaGrange interpolation is used when the
matrix consists of all numbers. It is to your advantage to clear the matrix of all numerical
denominators before invoking Chpoly. Use LCM to do this. When using the LaGrange
interpolation method on integer matrices, Fermat computes the many necessary determi-
nants using the Chinese Remainder Theorem. To do so, it must make an initial estimate
of the absolute value of the determinant. The estimate is often rather liberal, resulting in
longer than necessary computation time. Now, the determinants in question are simply
f(ci), where f is the characteristic polynomial and {ci} is a set of certain “sample points.”
You, the user, may be able to supply a far better bound on |f(ci)|. For example, you may
have some estimate of the location of the roots of f . For this reason, there is a second
optional argument to Chpoly in Fermat, a polynomial g such that |f(t)| ≤ |g(t)| for all t.
The syntax is Chpoly([x], g).

With sparse matrices, a clever way to compute characteristic polynomial is the Leverrier-
Faddeev method. (See example 4 in Appendix 3 for a short Fermat program that implements
the algorithm.) This method often loses to the standard one, det([x] − λI), but it can be
faster for matrices that contain quolynomials. The user may choose the method with the
second argument. If n = 0, Chpoly([x], n) will simply subtract the poly var from the diagonal
and invoke determinant. The determinant method will depend on choices made for &K,
&L, etc. as described elsewhere. If n 6= 0 the Leverrier-Faddeev method is used.

The “modifed Mills method” is a stunningly fast probabalistic “black box” or Wiedeman
algorithm that computes the minimal polynomial M(t) of a sparse matrix of integers, or,
more precisely, a factor of the minimal polynomial. (See Continued Fractions and Linear
Recurrences; W. H. Mills. Mathematics of Computation, Vol. 29, No. 129 (1975), pp.
173-180.) If one of the roots of M(t) is 0, the associated factor t of M(t) will not show
up, but other factors may not show up either. This algorithm is built into Fermat via the
command Minpoly. Syntax is Minpoly([a], level, bound). [a] is the matrix, which must be
Sparse. level = 0, 1, 2, 3, 4 is a switch to tell Minpoly how much effort to expend in its basic
strategy. Larger levels take longer, but have a better chance of giving the entire minimal
polynomial. bound is an integer at least as big as any coefficient in the minimal polynomial.
This argument can be omitted, in which case Fermat will estimate it with the well-known
Gershgorn’s Theorem.

Repeated calls to Minpoly may return slightly different answers. It may be worthwhile
to run it several times and compute the l. c. m. of the answers.

Minpoly is available in rational or modular mode.

56

The Dangerous Commands

This chapter describes several commands that should not be used by novices nor the
timid. Each one can produce impressive speedups in execution time. Each one, if misap-
plied, can crash the system, or worse, produce reasonable but erroneous output.

Nothing is free. The cost of speed is loss of flexibility, loss of error checking, and a
certain amount of fragility.

Integer

Integer is a directive to Fermat that promises that every scalar quantity encountered
during the execution of a function will be a number, not a polynomial, and more, not merely
a number but an integer of absolute value less than 228. Beware therefore of overflow,
especially when multiplying! Beware of computing something like Bin(50, 20), which is
larger than 228!

Fermat does not check to see that quantities encountered really are (small) numbers; if
one is not a number, the system may crash. Nor is overflow checked for.

Setting Integer in function F has no effect on a function G that F may invoke. If F
calls itself recursively, the later invocations will not automatically inherit Integer from the
earlier. For it to hold in any invocation, the command Integer must be executed in that
invocation.

With Integer, functions MUST use Return to pass back a value.

To further enhance speed, while Integer is in effect some range checking is disabled. If
you access an array via x[20] and [x] has less than 20 elements, the ordinary error message
will not be generated. What actually will happen is completely unpredictable.

Integer will not catch the error of treating an array parameter as if it were a scalar
parameter.

Implicit multiplication doesn’t work under Integer. You must write 2 ∗ x, not 2x.
As of 2010, a new arithmetic command has been added for when a function is in Integer

mode: x :∗ y to set x := x ∗ y; NB: this only works in Integer.

Ideally, one should modularize a computation so that segments that can take advantage
of this feature are moved into their own functions. Very impressive speedups are possible.

Compile

Like Integer, Compile is a directive to Fermat, and applies only to the function in which
it is located. Compile implements one of the many functionalities of a genuine compiler. It
is a promise to Fermat that the variables given to Compile will not change their identity
throughout all the executions of the function. Note carefully: the identity must not change;
it is perfectly fine to change the value of the variable. Essentially, “identity” here means
“address” or “access path.”

To use this feature, the command Compile must be the very first command in the
function. (If Integer is to be used also, Integer should be the second command.)

For example, the command Compile(x, [y], p[2], z) promises that x, [y], p[2], and z will
always refer to the same variables, everywhere within the function and in every call of the
function. The first time the function is executed, when Compile is seen, Fermat looks up

57

the names x, [y], p[2], and z. It then scans the entire function definition and augments
every occurrence of these names with a pointer to the symbol table record of the name
that exists at that instant. When a reference to one of the variables is encountered during
execution, the need to look up the name in the symbol table is therefore obviated. This can
provide a very impressive speedup. (Note: there is a speed advantage to compiling p[2], not
just [p]. But make sure p[2] has been initialized before the Compile statement is executed.
Unfortunately, two dimensional references like p[2, 3] cannot be compiled. Such a reference
can be converted to one dimensional form using column-major order.)

Only the programmer can tell for sure that it is safe to compile a certain name, say
z. If z is a global variable one time the function is executed, but is some other function’s
local variable another time, it must not be listed. Furthermore, if z is another function’s
parameter or local variable, it is not the same z during different invocations of that function
– recall that the symbol table entry for local variables is removed after invocation ends –
and cannot be compiled. This is the most common mistake in using Compile. It is
an insidious error.

The list of names following Compile must under no circumstances contain the parameters
and local variables of the function. These are automatically compiled, when Compile is
specified (but see next paragraph). Rather, the list should be of names created elsewhere,
outside the function. If the list (and the parentheses) are omitted, only the parameters and
local variables will be compiled.

It is possible not to compile the parameters, by using the syntax Compile∗, i.e., placing
a ∗ after the word “Compile” and before the parenthesis. Then only the variables in the
following list will be compiled. Make sure the list does not contain the name of a
parameter! The system may crash if it does. A compiled function cannot be called
recursively, unless you use Compile∗. (Indeed, that is why Compile∗ exists as an option.)
There will be no error message if you try it. Rather, garbage will be generated or the system
will crash. Beware of this mistake when using Compile!

A subtlety arises involving compiled array references and the array initial indexing value,
0 or 1, which can be changed by the command &a. If you place x[5] in the list of variables
to be compiled, the address of x[5] will be determined according to the array initial indexing
value that exists at the instant of compilation. If you execute &a within the function before
a reference to x[5], you have a problem – at the very least, the function will not execute the
way it would without compilation.

This problem does not arise from compiled references of the type [x], as in Compile([x]).
Later executions of &a are irrelevant. Therefore, a cure to the problem of the previous para-
graph is to use Compile([x]) instead of Compile(x[5]) when &a occurs within the function
being compiled. (Compile(x[5]) is, of course, slightly more efficient.)

Range checking of compiled array references is disabled. If you access an array via x[20]
and [x] has less than 20 elements, the ordinary error message will not be generated. What
actually will happen is completely unpredictable.

Compile and Sparse do not work together: Sparse arrays cannot be passed as arguments
to a compiled array parameter. Nor can Sparse arrays appear in the list of variables after
the Compile command.

Changes to a variable’s identity before the compiled function is executed the first time

58

are irrelevant. Compile is an executable statement, and is not noted at function definition
time.

There is no point incurring the cost of compilation unless the function will be exe-
cuted often, or contains a loop that will be executed often. If a function is dominated by
polynomial or matrix operations, little relative improvement will result from compilation.

I have seen the use of Integer, Compile, and the increment command eliminate 90% of
the execution time of some functions.

Selective Change of Arithmetic Mode

Many algorithms in number theory compute results by performing subcomputations
modulo n, for various n’s, and then constructing the answer in the field of rationals. To
do this well in Fermat it is necessary to drop in and out of modular mode quickly, con-
verting only certain variables. This selective change of arithmetic mode is implemented, for
example, with the syntax &(p = 19 : (x, [y], z)) and &(p= i:(x, [y], z)). The first command
enters modular mode with modulus 19, converting only x, [y], and z. The second returns
to rational mode. Other variables are never touched. Attempting to reference other pre-
existing variables while in modular mode could lead to a crash. An assignment such as
w := 2 performed while in modular mode will be dangerous if w pre-existed. If not, and if
w is added to the list when converting back to rational mode, all will be o.k.

In the example above the variables x, [y], and z will not have their initial values when
rational mode is reinstated. For example, 21 would be converted to 2, which will be “con-
verted” back to 2; the 21 will be lost unless the user has gone to the trouble of stor-
ing it somewhere else. To preserve the initial value of, say, x and z, use the syntax
&(p = 19 : (∗x, [y], ∗z)) and &(p= i:(∗x, [y], ∗z)). No variable preserved in this fashion
should be changed while in modular mode; think of such variables as read-only input to
modular mode. To preserve all, use &(p = 19 : (∗∗)). Then in returning to rational
mode, probably a new variable has been created (otherwise you could preserve results only
by writing to a file), say x, so use &(p= i: (x)). (Note that there need be no ∗ in the
command.)

If you enter modular mode selectively, you must leave it selectively – i.e., with a com-
mand of the form &(p= i: (. . .)) with something in the parenthses.

If you enter modular mode selectively, you must be cognizant of the fragility
of the situation. While in modular mode, do not change Laurent. Do not adjoin or cancel
a polynomial variable. Do not change the polymod situation.

Here is a subtlety with selective change of arithmetic mode. The built-in function Chpoly
works quickly because certain polynomials are precomputed once and for all, and then used
to compute the characteristic polynomial of any matrix given later. The computation
of these hidden polynomials takes a fair amount of time, which is why the command to
adjoin a polynomial variable, say t, takes longer when it is the first variable adjoined – the
polynomials are being computed. When changing arithmetic mode, these polynomials have
to be converted to the new format. That takes some time, and would defeat the purpose of
quickly dropping in and out of modular mode.

The solution is an interpreter command &B (for Block) that sets a switch to block the
conversion of these hidden polynomials. When switched on (the default), the polynomials

59

will not be converted. So if Chpoly is called in modular mode, it will be done the straight-
forward but relatively slow way of subtracting t from the diagonal and computing the
determinant of the resulting matrix. &B cannot be executed while in modular mode.

Full Interrupt

Many of Fermat’s more sophisticated procedures for g.c.d., factoring, etc., affect system-
wide global status variables. For example, the g.c.d. routines in rational mode drop in and
out of modular mode. Ordinarily, Fermat does not allow user-interrupt at these times, for
the very good reason that the user would be in modular mode, not know it, and may attempt
to access some now undefined variable, with bizarre or devastating results. However, some
of these procedures can be very time consuming, and the user often wants to interrupt
them. The solution is to allow the user to set a special flag that allows interrupts even at
these dangerous times. The command is &Z, a simple toggle switch. When switched on,
and when &m has been set on, the user can get pretty fast interrupts just about all the
time. It is a good idea to immediately do an &g to see if the system globals have changed.
And be careful!

60

Errors and Warnings

When an error occurs (dividing by 0, array index out of bounds, etc.) execution of the
function containing the offending statement stops and the interpreter returns to the lowest
interactive level and displays a message describing the error. If the error occurred during or
because of a command entered from the terminal, the portion of the command successfully
parsed is displayed. Then a function trace dump is displayed: the stack of function calls
from most recent to earliest. However this feature is not perfect: if the stack of calls is very
deep, only the first 500 (i.e, the 500 most recent) are to be believed.

If the error occurred during a function evaluation, the interpreter then displays two
statements, the last one successfully executed followed by the expression it was working on
when the interrupt occurred, up to the offending character. Usually the offending character
is not displayed, but sometimes it is the last thing displayed. Sometimes the first of these
statements (the last one successfully executed) is not displayed, usually because the inter-
rupt occurred in the first line of a function. Keep in mind that the two statements may not
be physically adjacent in the function definition.

If a great many function calls have been stacked up when an error occurs, then if the
interpreter simply returned to the lowest level, all of those functions’ parameters would
be on the environment stack. The user would find this extremely inconvenient: his “real”
variables would be buried. Thus, the interpreter also pops off all the now useless parameters,
up to around 500 calls deep.

The command &e can be used to change the way errors are handled in some cases –
see the next chapter.

Here is an example of an error that occurred during a function evaluation, taken from
a Fermat session. Line numbers [n] added:

>G2(10)

*** Inappropriate symbol: ’

[1] error in function definition. ‘:’ or ‘;’ expected.

*** Error occurred at this point:

[2] G2(10);

*** The most recent function evaluations were:

[3] Undo

Next

G2

*** Function was interrupted at:

[4] n<0;

varcount[n] ’

The user invoked G2(10). In line [1], Fermat reports the basic problem, apparently
a quote in place of a colon in some assignment statement. Line [2] reports the offending
place in the input line (read from the terminal) that caused the error. Line [3] begins the

61

trace dump of function evaluation calls. G2 called Next which called Undo. The error is
therefore inside Undo. Line [4] and the following are the last two commands that Fermat
executed. n < 0 was executed, and execution terminated at the end of the next line, where
we can see the offending quote.

Warnings

There are a few situations that produce warning messages, such as entering the command
&> from the console. No error occurs, zero is returned, and normal execution proceeds.
The more serious of these are called “Fermat Warnings” and “Fermat Errors”, which occur
when some internal condition that “must” be true is in fact false. For example, in the
middle of certain G.C.D. computations, some polynomials “must” divide into others. If
that fails, a Fermat Warning is issued. Usually in a Fermat Error the interpreter pops up
to a new level.

Please report all Fermat Warnings and Errors to the author!

A commonly encountered but usually harmless warning message is “end of line found
inside a comment.” It occurs whenever Fermat reads a function definition and sees a multi-
line comment. It is certainly allowable to have multi-line comments. Yet the warning
message must be produced in order to catch the error of entirely omitting the end-of-
comment symbol } . If you do that, Fermat will be stuck in an infinite loop, and your only
notification of that fact will be the above warning message.

62

Popping, Pushing, Debugging, and Panic Stops

Let’s say that a computation seems to be going on too long, or for some other reason
you want to stop it. Fermat will break if you hit cntl-c. The interpreter will push on a new
command level. You can now examine any of the variables, or do anything else – it’s just
as good as the original command level (almost – more later). This is a useful debugging
feature. To resume the computation (and fall back to the original command level), enter
the command & p (“pop”). To stop the computation completely and fall back to the lowest
level (in effect, a panic stop), enter &@.

See “Full Interrupt” under “The Dangerous Commands”).

An interrupt subtlety: if in the new command level you delete the function you were
executing, when you fall back to that command level, the function will still be able to
resume, i.e., it still exists internally until its execution terminates. However, since its name
has been erased from the list of functions, no function can call it. Therefore, an attempt at
recursion will result in an error.

If you interrupt a Fermat built-in function, do not invoke the SAME built-in at the
higher command level.

The commands & p and &@ can be inserted in a program, as can & P (“push”), which
has the same effect as pressing cntl-c.

Command levels can be stacked up to level 9.

In command levels beyond the first errors are handled differently. When an error occurs,
the interpreter tries to recover from it, prints a warning, and continues the computation,
with nonguaranteed results. For example, division by 0 causes Fermat to print a warning
and use 0 for the result. Obviously, this may spawn further errors. If no reasonable recovery
is apparent, the Fermat interpreter is forced to bomb back to the lowest command level.
There is then no way to restart the computation at the point that originally created the
interrupt.

To somewhat overcome this annoyance, the command &e has been added to Fermat.
This sets a flag that changes the way errors are handled during function executions and at
higher command levels than the first. If you have previously executed &e, when an error
occurs, Fermat will push on a new command level and halt. You can then examine the
variables and try to rectify the error yourself, and then pop down to the previous level to
allow the computation to continue. (You may find that new errors are being spawned. It
may take several & p commands to get you down to the previous level, so keep trying.)
Note however that this is still less then perfect. For instance, if the problem was a syntax
error in a function, it will do no good to cancel the function and enter a patched up version –
upon popping down to continue the previous level, Fermat will still be reading the previous
version of the function. Furthermore, if your attempted patch is not good enough, Fermat
may crash. It is safer, therefore, to do a panic stop instead of trying to resume the lower
level.

See “Full Interrupt” under “The Dangerous Commands.”

63

64

Initializing with Ferstartup

Fermat has a “ferstartup” file to provide for user-defined initializations. The last thing
Fermat does while booting up is to read this file as if it were an input file and execute
the statements it finds there. The file can contain any Fermat statements, including read
commands, each followed by a semicolon. It should not have &x. Lines can be commented
out by starting them with a semicolon.

Besides mere convenience, the initialization file provides the capability of invoking Fer-
mat from other Fermat execution files, since it is possible to direct Fermat without ever
typing a command on the keyboard. For example, some program (another Fermat?) could
create data for Fermat and store it in a file in Fermat-readable form, then insert the right
read command in ferstartup, then invoke Fermat.

For Linux, Unix, and OSX the first line of ferstartup must be the number of megabytes
of RAM on your machine. The default is 1000 meaning one gigabtye.

Ferstartup must be at the top level inside the Fermat folder (Windows; inside folder
BACKWARD for Linux and OSX, FORWARD for Unix). [The Unix version is obsolete.]

65

Hints and Observations

These comments resulted from questions by users of Fermat.

•When functions are defined, they are not parsed completely. Only certain key features
are looked for, such as comments, loops, and if-statements. Therefore, many syntax errors
are not detected until the function is executed.

• The order that the functions are defined in the input file is completely irrelevant,
unless you put a statement in the input file that actually invokes one of the functions.
Then, of course, that function must have been previously defined, and any function it calls
must have been previously defined.

• The order in which most mode-changing commands are given is irrelevant. You may
add a polynomial variable, then set the Laurent flag, then change array indexing – in this
order or another.

• Fermat is an interactive language, reading and writing to the console, i.e., to the same
file. This is somewhat difficult to arrange. Other interactive languages require the user to
type a special character, usually a semicolon, at the end of each line. I have used some
of those languages and been continually annoyed by the necessity of adding semicolons.
Therefore, I arranged it that Fermat does not require them – although they are required
at the end of statements in an input file. But nothing is free, and hence the necessity for
the continuation character ‘ when entering more than one line from the terminal. The only
place you may find this annoying is when you are editing a function and you forget to put
a ‘ at the end of every line. When you attempt to enter the new amended function, Fermat
will detect this omission and print out the offending line.

• Functions can contain anything that can be entered from the terminal [not &F or
&v]. In particular, they can contain the definitions of other functions, or even redefine
“themselves.”

• Very large numbers (those occupying 300 or more lines) or polynomials take time to
display on the screen. For example, if you enter 8000!, more time will be spent computing
the digits of this number in base 10 then in actually multiplying it out in the first place.
[Note: when I first wrote this manual around 1992, I used the example 790!, which now
computes and displays in time 0.000. Progress.]

• The first command that you execute after starting Fermat may take about a tenth of
a second longer that it otherwise would. This seems to be due to memory management.

• Suppose you want to invert matrix [a]. Typing [a]∧-1 will work, but typing 1/[a] will
not. In the first case, the initial “[” alerts Fermat to expect an array expression.

• Over ground ring Z with several polynomial variables, there is a fast probabalistic
test for a polynomial dividing into another. It sometimes fails. The usual ramification of
this a “Fermat Error” of some kind. Turn the test off with & t.

• Several matrix algorithms, such as determinant, inverse, row reduction, depend on
efficiently choosing a pivot element. For sparse matrices there are several ways to do this,
controlled by the command &u. I use &(u = 5).

66

• Except for small matrices containing constants (fewer than 15 or so rows) all matrices
should be declared sparse. The procedures for sparse matrices are more sophisticated.

• If you execute a save command &s, and later the machine crashes for some reason,
the material that was written to the file may not survive, because the file was never closed.
To overcome this, enter &S and name a new file. The original file will be closed.

However, sometimes material is still lost after a bad crash. You can absolutely save
something by interrupting Fermat, displaying the variables you want, grabbing the data
with Copy (command-c), and then transferring to some word processor. Open a document
there and save the material.

• In reading and saving, the difference between &r and &R, and &s and &S, may be
confusing. Use the small letter form either the first time you give a read or save command,
or to continue reading or saving to the same file as you previously specified. Use the capital
letter form to change to a different file, thereby closing the former one.

In either case, unless you give the imperative form of the command, Fermat will prompt
you for the name of the file. This means that if you put &S in the middle of a function,
you cannot leave the terminal until the function has gotten to that point in the program;
someone must be there to respond to the prompt. The problem is solved by using the
imperative form: &(S = <filename>). This command can be used whether or not it is the
first save. You can simply start up the function and leave it to run overnight.

You may also use a character string stored in an array to name the file, as in &(S =
[x]). This allows file names to be computed within functions.

If you create a file with the &s or &S command, say abc, the name of the file will be just
that – abc with no .txt or other suffix. If you create a text file with some word processor
or editor under Windows, the suffix .txt will probably be appended, whether you see it or
not. To read such a file in a Fermat session, you will have to put the name in quotes and
add the .txt, as in ’abc.txt’.

• Deleting Array side effect: For at least fifty years, authors of programming texts
have been decrying side effects. A sneaky one possible here comes from deleting an array.
Consider the assignment statement m[i] :=< expression >. Fermat executes this by first
checking that array m exists, then computing i, then setting a pointer to the place in
memory where m[i] is. Suppose the expression deletes an array. Ordinary arrays are kept
in a linear structure. When an ordinary array is deleted, all the arrays farther down in the
structure slide up to fill the “empty” spots. That might change where m is! The pointer
computed for m[i] might now be incorrect! Watch out! [This is not possible with sparse
arrays.]

• Fermat has been designed to catch all sorts of errors, but no program can allow for all
eventualities. Besides the features described in the chapter “The Dangerous Commands,”
one thing that will cause Fermat to crash is too much recursion. If a function calls itself
several thousand times without terminating, all stack memory will be exhausted.

Another thing that will cause a crash is to execute a change of precision &p after you
have pushed to a new command level by pressing cntl-c. Upon resuming the previous
computation, Fermat will probably crash. There are also a few strange things you can do
with array parameters to cause a crash, and with Powermod.

67

There’s an old Henny Youngman joke: A man goes to see his doctor. He lifts his arm
up and down in an odd fashion, saying “Doc, it hurts when I do this.” The doctor says,
“Don’t do that.”

Please send constructive criticisms to Robert H. Lewis, Department of Mathematics,
Fordham University, Bronx NY 10458, rlewis@fordham.edu.

September 24, 2023

68

Appendix 1. This is now obsolete.

Appendix 2. Table of Fermat Special Symbols

Symbol Keystroke Meaning Use Apply to
arrays?

\ \ divide and truncate x\y, [x]\y yes

| shift-\ modulo x|y, [x]|y yes

| . . . | shift-\ absolute value |(x+ y)| no

<> <> not equal to x <> y no

>= >= greater than or equal x >= y no

<= <= less than or equal x <= y no

$ shift-4 greatest integer $x yes
∧ shift-6 raise to power x∧n, [x]∧n yes

shift- - suppress modular 9087 no

: shift- ; suppress display; terminal
only

10∧9999 : no

’ ’ start, end quote ’ . . . ’ no

” shift-’ derivative of poly, quoly x” no

! shift-1 factorial x! no

! shift-1 display !(x, y, z), !!x, ![z yes

? shift-/ get from terminal ?s, ?[x] yes

< shift-, previous value x := < yes

shift-3 polynomial evaluation x#y, x#(u = y),
x#[y]

yes

@ shift-2 panic stop &@ no

@ shift-2 cancel @[x], @F , @<[x]> yes

shift- - concatenate arrays [x] [y] yes

J shift-j add (drop) poly. var. &J no

{ shift-[start comment {. . .} no

} shift-] end comment {. . .} no

} shift-] exit function &} no

> shift-. exit loop &> no

]] cycle (in loop) &] no
∼ shift-‘ ellipsis x[2∼ ,4 ∼] yes

‘ ‘ line continuation only from terminal no

<F shift-,
shift-f

system function only from terminal no

% shift-5 array of arrays %[1] := [x] yes

69

Appendix 3. Some Significant Examples

These examples are not necessarily “best possible” solutions.

Example 1.

Note: To appease the typesetting program that created this document, a few small changes
were made in non-ASCII symbols.

; This set of functions was used in November 1990 by Robert H. Lewis to

; answer an unsolved question in group theory. A certain property of some

; groups called the Gkj groups was checked by counting the number of

; homomorphisms from Gkj -> SL(2, Z/4). It turns out that for certain k and

; j, this number can vary from the expected number. Gilbert Baumslag

; presented the question in this form. Gkj is a one relator group with two

; generators; the relation involves the two generators raised to powers k

; and j. To find a homomorphism from Gkj into a group it is necessary and

; sufficient to find 2 elements of that group that satisfy the same relation.

; SL(2, Z/4) is picked because it is finite, 2x2 matrices are easy to

; compute with, and it has an appropriate lower central series.

; Fermat note: Fermat reads the first six statements and does them. Then

; it reads the function definitions. Then it executes the last 11 statements.

; There is no reason to have this particular order of statements in this file.

; In particular, the function definitions can be in any order.

&(t = 1);

&(m = 0); ;; Turn off the user interrupt capability.

&(J = x); &(J = y); &(J = z); &(J = w); ;; Adjoin 4 polynomial variables.

;; Find [p] among the list of 2x2 matrices representing SL(2,Z/4).

Function Find(i,size,j,ans) =

ans := 0;

for j = i, size do

if p[1] <> e[j] then &]

fi;

if p[2] <> f[j] then &]

fi;

if p[3] <> g[j] then &]

fi;

if p[4] = h[j] then

ans := &_m(j);

& >

fi

od;

ans.;

;; Find where each element [p]’s inverse transpose is in SL(2,Z/4).

70

Function SetInvTr(i) =

for i = 1, invs do

[p] := [(e[i],f[i],g[i],h[i])];

{ ith element of SL(2,Z/4) }

STrans[p];

[p] := [(p[4],-p[2],-p[3],p[1])];

{ fast inverse }

it[i] := Find(1, &_m(invs))

od.;

;; Insert is used by DelConj.

Function Insert(x1,i,k) =

i := 1;

while i <= j do

if x1 > conjs[i] then

for k = j + 1, i + 1, - 1 do

conjs[k] := conjs[k-1]

od;

conjs[i] := x1;

&_m(j :+);

&}

else

if x1 = conjs[i] then

&}

else

&_m(i :+)

fi

fi

od;

conjs[i] := x1;

&_m(j :+).;

; Compute the conjugacy classes in SL(2,Z/4). Look at each element of

; SL(2,Z/4). Delete from the list of SL(2,Z/4) all of its conjugates.

; When finished, one representative is left in each class.

Function DelConj(i,j,k,n,spot) =

Array conjs[invs\2];

Array a1[2,2];

Array count[2];

[count] := 0;

&_m(size := invs);

i := 1;

while i <= size do

[a1] := [(e[i],f[i],g[i],h[i])];

j := 0;

{ Fill the array conjs to tell where the conjugates of [a1] are. }

for k = 1, invs do

[p] := [(e1[k],f1[k],g1[k],h1[k])];

[q] := [(p[4],-p[2],-p[3],p[1])];

[p] := [q]*[a1]*[p];

spot := Find(i, size);

71

if spot = 0 then

!!’spot is 0’

fi;

if spot <> i then

Insert(spot)

fi

od;

!!(’number of conjugates is ’, &_m(j + 1));

[count] := [count] _ &_m(j + 1);

{ Delete the conjugates of [a1]. Change [it] accordingly. }

for k = 1, j do

&_m(size:-);

for n = 1, conjs[k] - 1 do

if it[n] = conjs[k] then

it[n] := i

fi;

if it[n] > conjs[k] then

&_m(it[n] := it[n] - 1)

fi

od;

for n = conjs[k], size do

e[n] := e[n+1];

f[n] := f[n+1];

g[n] := g[n+1];

h[n] := h[n+1];

it[n] := it[n+1];

if it[n] = conjs[k] then

it[n] := i

fi;

if it[n] > conjs[k] then

&_m(it[n]:-)

fi

od

od;

&_m(i :+)

od;

[count] := [count[3~]];

@([conjs], [a1]).;

;; OneDet tests every possible 2x2 matrix over Z/4 and saves the

;; invertible ones. j1 is owned by CreateData.

Function OneDet(i,j,k,l) =

for i = 0, dim - 1 do

for j = 0, dim - 1 do

for k = 0, dim - 1 do

for l = 0, dim - 1 do

if i*l - k*j = 1 then

&_m(j1 := j1 + 1);

e[j1] := i;

f[j1] := j;

g[j1] := k;

72

h[j1] := l

fi

od

od

od

od.;

;; Count the number of all 2x2 matrices over Z/4 that have determinant 1.

Function CountInv(i,j,k,l,j1) =

for i = 0, dim - 1 do

for j = 0, dim - 1 do

for k = 0, dim - 1 do

for l = 0, dim - 1 do

if i*l - k*j = 1 then

&_m(j1 :+)

fi

od

od

od

od;

j1.;

Function CreateData(j1) =

Array e[invs];

Array f[invs];

Array g[invs];

Array h[invs];

OneDet;

[e1] := [e];

[f1] := [f];

[g1] := [g];

[h1] := [h].;

; Main tries one pair of exponents, exp1 and exp2. It counts the number

; of homomorphisms from the group they define into the 2x2 matrix group.

; The basic word that defines the group has been massaged to minimize

; the amount of work within the innermost loop. That is also the reason

; for using the polynomials -- part of the word can be evaluated in advance

; "once and for all".

Function Main(exp1,exp2,i,j,k,l,yes) =

time := &T;

hits := 0;

for i = 1, size do

[c] := [(e[i],f[i],g[i],h[i])];

[ci] := [c]^exp1;

[cj] := [c]^exp2;

[prod1] := [cj]*[b];

[prod2] := [b]*[cj];

{ If [c] is in the center, so that count[i] = 1,

the answer is easy. Increment and cycle. }

if count[i] = 1 then

73

&_m(hits := hits + invs);

&]

fi;

for j = 1, invs do

&(m = 1);

{ Allow mouse interrupts. }

[a] := [(e1[j],f1[j],g1[j],h1[j])];

[p] := [ci]*[a];

&(m = 0);

{ Turn off mouse interrupts. }

[a1] := [(p[4],-p[2],-p[3],p[1])];

[test] := [a1]*[a]*[p];

[test] := [prod1] - [prod2]*[test];

for k = 1, invs do

yes := 1;

for l = 1, 4 do

if test[l]#(h1[k], g1[k], f1[k], e1[k]) <> 0 then

yes := 0;

& >

fi

od;

if yes = 1 then

&_m(hits := hits + count[i])

fi

od

od

od;

!!(’time is ’, &_m((&T - time)/60), ’seconds.’);

!!(’i, j, hits are ’, exp1:3, exp2:3, hits).;

; Driver is the ’main program’. It first counts the number of invertible

; 2x2 matrices over Z/dim, using CountInv. (dim = 4 is the right choice,

; for which invs is 48). CreateData then actually creates the 48 matrices.

; Matrices are stored in 4 arrays [e], [f], [g], [h],one for the upper

; left coordinates, one for the lower left, etc. (This is inelegant and

; could be done better with Fermat’s array of arrays.) These are

; duplicated into [e1], [f1], etc. Then SetInvTr finds where each matrix’s

; inverse transpose is. This data is stored in array [it]. DelConj breaks

; the group into conjugacy classes. (This is done because the basic defining

; word is invariant under conjugation, so we save some time this way.)

; When it’s finished, [e], [f], [g], [h] store 1 representative from each

; class, and [it] says where the inverse transpose of each of these

; representatives is. But it turns out that it[j] = j for all j. Had

; this not been true, a further speed up would have been possible. Then a

; loop indexed on i tests the exponents from the arrays [try1] and [try2]

; thereby looking for maps from the group Gkj,where k = try1[i] and j =

; try2[i]. Main counts the number of homomorphisms from the Gkj group into

; SL(2,Z/4).

Function Driver(size,time,invs) =

time := &T;

Array a[2,2];

74

Array b[2,2];

Array c[2,2];

Array ci[2,2];

Array cj[2,2];

Array p[2,2];

Array a1[2,2];

Array b1[2,2];

Array q[2,2];

Array test[2,2];

[b] := [(x,z,y,w)];

invs := CountInv;

!!(’order of group is ’, invs);

Array it[invs];

CreateData;

SetInvTr;

!!(’initial [it]’);

![it; !;

DelConj;

!!(’time is ’, &_m((&T - time)/60), ’ seconds.’);

!!(’size is ’, size);

{ size = number of conjugacy classes. }

!!(’Now [it] is ’);

![it[1~size]; !;

!!’[count] is ’;

![count; !;

for i = 1, 100 do

Main(try1[i], try2[i])

od.;

?dim; ; Ask user for dim.

&(p = dim); ; Go to modular mode mod dim. In converting, dim

; becomes 0. (of course)

dim := -1;

&_m(dim := dim + 1); ; dim now holds dim, not 0.

Array try1[100]; ; Create exponents to try for k and j.

Array try2[100];

[try1[1~7]] := 1;

[try1[8~14]] := 2;

&(a = 0);

[try2] := [<i=0,99> (&_m (i|7 + 2))];

&(a = 1);

&x;

Example 2.

These functions compute the determinant det of a matrix [x] with one-variable polynomial
entries. This method is now part of the built-in determinant function. The strategy is to
figure out a bound on the degree of the determinant det, then evaluate det at a set of points,
then use interpolation to construct det.

The hard thing is to estimate in advance the degree of the determinant. Several methods

75

are possible. This one has the advantages of being fairly fast and not often overestimating
the degree. A bad overestimate will cost dearly in the final interpolation, here accomplished
with the Sigma command. This method also spotlights many of Fermat’s features.

We assume that the matrix [x] has already been defined. ‘Degree’ estimates the degree
of det by simulating what would happen to the terms of highest degree in the matrix if the
determinant were actually computed with row and column manipulations.

Rational mode is assumed.

Function Degree(n,i,j,k,diff,answer) =

{ Create matrix of degrees of entries in [x]. n = dim. of [x]. }

Array y[n,n];

for i = 1, n*n do

if x[i] = 0 then y[i] := -10^10 { " -infinity" }

else y[i] := Deg(x[i]) fi

od;

answer := 0;

{ This loop simulates row and column manipulations in [x] by working

with the degrees in [y]. }

for i = 1, n do

{ Try to factor out as many powers as you can. }

Rowscan(n, i);

Colscan(n, i);

{ Find spot with lowest degree >= 0. }

j := Det_ + ([y[i~,i~]] + 1);

if j = -1 then & > fi;

{ Convert linear to (row, column) coordinates in [y]. }

k := (j - 1)\(n - i + 1) + i;

j := (j - 1)|(n - i + 1) + i;

{ If the remaining matrix is all constants, stop now. }

if Maxdegree(n, i) = 0 then & > fi;

{ Simulate row and column manipulations. }

Switchrow([y[,i~]], i, j);

Switchcol([y[i~,]], i, k);

for j = i + 1, n do

diff := y[j,i] - y[i,i];

for k = i + 1, n do

[y[j,k]] := Max(y[j,k], diff + y[i,k])

od

od;

answer := answer + y[i,i]

od;

answer.;

Function Rowscan(n,i,r,j,deg) =

for r = i, n do

{ Find position and value of smallest nonnegative entry in rth row

in columns >= i. }

j := Det_ + ([y[r,i~]] + 1);

deg := y[r,j+i-1];

{ If deg is positive, factor it out, changing answer accordingly. }

if deg > 0 then

76

[y[r,i~]] := [y[r,i~]] - deg;

answer := answer + deg

fi

od.;

Function Colscan(n,i,r,j,deg) =

for r = i, n do

{ Find position and value of smallest nonnegative entry in rth column

in rows >= i. }

j := Det_ + ([y[i~,r]] + 1);

deg := y[j+i-1,r];

{ If deg is positive, factor it out, changing answer accordingly. }

if deg > 0 then

[y[i~,r]] := [y[i~,r]] - deg;

answer := answer + deg

fi

od.;

Function Maxdegree(n,i,r,s,deg) =

deg := 0;

for r = i, n do

for s = i, n do

if y[r,s] > deg then

deg := y[r,s];

&>

fi

od;

if deg > 0 then &> fi

od;

deg.;

Function Max(a,b) = if a > b then a else b fi.;

{ Assume that t is the polynomial variable. }

n := Degree(Cols[x]) \2;
{ Standard LaGrange interpolation at points -n, -n+1, ..., n-1, n:}

f := Prod < i=-n,n > [t-i];

det := Sigma<j=-n,n>[Det([x]#j)*f/(t-j)/ Prod<i=-n,j-1> (j-i)/
Prod<i=j+1,n> (j-i)];

Example 3.

The Leverrier-Faddeev method for computing matrix inverses and characteristic poly-
nomials (see “The College Mathematics Journal,” May 1992, p. 196.) I present two slightly
different programs for each case.

Function CharPoly(a,n,i,pm) =

{ Assume t is a polynomial variable. }

n := Cols[a];

77

Array c[n];

[q] := [a];

c[1] := -Trace[a];

for i = 2, n do

[q] := [q] + c[i-1]*[1];

[q] := [a]*[q];

c[i] := -Trace[q]/i

od;

{ Correct for odd n. }

if n|2 then

pm := - 1

else

pm := 1

fi.;

Function Invert(a,q,n,i) =

{ Set [q] = the inverse of [a] }

n := Cols[a];

Array c[n];

[p] := [a];

c[1] := -Trace[a];

for i = 2, n do

[q] := [p] + c[i-1]*[1];

[p] := [a]*[q];

c[i] := -Trace[p]/i

od;

[q] := [q]/(-c[n]);

@([p], [c]).;

If appropriate, the inclusion of Integer in either procedure will provide a very dramatic
increase in speed. However, Integer cannot be placed in the first procedure as it stands,
because of the presence of the polynomial variable t. Rather, all but the the last line could
be placed in a seperate procedure that may contain Integer.

78

Appendix 4. Summary of Matrix and Polynomial Features

Matrix and polynomial computations are the heart of Fermat. Here is a concise annotated

list of relevant features and commands. Most are explained further earlier in the manual.

Polynomials

Recall that most built-in functions allow call-by-reference for parameters. For example,
time and compare Terms(x) and Terms(ˆx) for a large x.

Adjoin polynomial variable: use the command &J (Fermat interrogates user for name), or
&(J=t) (imperative to adjoin t).

Cancel (delete) polynomial variable: similar to above, &(J=−t).

Quotient rings and fields: One may choose to mod out by some of the polynomial variables
to create quotient rings (or fields). The chapter on “Polymods” describes how. In principle,
any monic polynomial may be modded out, say tn + c1t

n−1 +
However, Fermat is best at the case where the quotient ring becomes a field (note well,

QQ[t, u, . . .] / < p, q, . . . > is a field, ZZ[t, u, . . .] / < p, q, . . . > is not). Specifically, suppose
the polynomial variables have been attached in the temporal sequence t, u, v, Begin by
modding out a monic irreducible polynomial p(t) such that F1 = ZZ[t]/ < p > is an integral
domain, and its field of fractions is QQ[t]/ < p >. Then, if desired, mod out by a monic
polynomial q(u, t) such that F2 = F1[u]/ < q > is an integral domain, and continue in this
manner always creating an integral domain, and, by the same stroke, its field of fractions.

You must tell Fermat that a field will result, and it is your responsibility to check this.
Do this at each step by adding a comma and 1, as &(P = tn + c1t

n−1 + . . ., 1). You
may append a list of primes q such that the modder p(t) remains irreducible mod q. For
example, &(P = t3 + t2 + t + 2, 1 : 151, 167, 191, 839, 859, 863, 907, 911, 991). If you omit
the list Fermat will compute it for you. (This takes a while, so if you save the session to a
file, Fermat will include the list in the saved file and just reload it next time.) Fermat then
computes a second list of auxiliary primes: modulo these primes the modding polynomial
has a root. Both types of primes are used to speed up g.c.d. computations. If Fermat
cannot find enough of either type, it will tell you and instruct you how to get more, using
the commands &A and &B.

Laurent Polynomials: a polynomial with negative exponents. To allow this, activate the
toggle switch &l. All of the variables you have created up to that point will be converted
so that no negative exponents are in the denominator of a quolynomial and all positives are
factored out and moved to the numerator. For example, 1/(t2 +2t) will become t−1/(t+2).

Basic arithmetic: +, −, ∗, /, |, \, ˆ. p/q creates a rational function (“quolynomial”)
unless q divides evenly into p. In any event, GCD(p, q) is computed and divided into p and
q. p|q means p mod q and p\q means p div q, i.e. divide and truncate.

Mod and div may be “pseudo” results: if c is the leading coefficient of q and is not
invertible, there exist polynomials r and y such that ckp = yq + r, where 0 ≤ k ≤ deg(p) +
deg(q). Fermat chooses the smallest possible k. p|q is r and p\q is y.

79

Remquot = remainder and quotient. Syntax is Remquot(x, y, q). q gets the quotient of
dividing x by y and the function returns the remainder. Almost twice as fast as calling mod
and div separately. Pseudo-remainder and quotient will be returned if necessary.

Deg. degree of a polynomial (or quolynomial). There are three variants: (1) Deg(x) com-
putes the highest exponent in x (any expression) of the highest precedence polynomial
variable. (2) Deg(x, i) computes the highest exponent in x of the ith polynomial variable,
where the highest level variable has the ordinal 1. (3) Deg(x, t) computes the highest expo-
nent in x of the polynomial variable t. In modular mode, Deg returns an actual integer, not
reduced modulo the modulus. For a quolynomial, it returns the degree of the numerator.

Codeg, “codegree,” just like Deg except it computes the lowest exponent.

= polynomial evaluation. x#y replaces the highest precedence variable everywhere in x
with y. x#(u = y) replaces the variable u with y. x and y could be quolynomials.

There is a fast shortcut form of evaluation called total evaluation. To evaluate x at
every variable, use the syntax x#(v1, v2, . . .), where all the vi are numbers. There must
be a number corresponding to each polynomial variable, in the precedence order – highest
precedence (last attached) first.

Fermat also allows evaluation of polynomials at a square matrix. The syntax is x#[y].
The highest precedence polynomial variable in x is replaced with the matrix [y] and the
resulting expression simplified. [y] can contain entries that are quolynomials.

The following more general syntax is allowed. Suppose there are five poly vars, e, d, c, b, a
in that order (e last and highest). Then q#(d = w, x, y) will replace each d in q with w,
each c with x, each b with y. e and a are untouched. Further, w, x, and y can be arbitrary
quolynomials.

Similarly if [t] is an array, q # (d = [t]) replaces the variables from d on down with the
entries of [t] in column major order until [t] is used up. It is an error if [t] has too many
entries.

Numb = is the argument a number (as opposed to a polynomial or quolynomial)? If so the
result is 1, else it’s 0.

Numer = numerator of a quolynomial. In rational mode, also gives the numerator of a
rational number.

Denom = denominator of a quolynomial. In rational mode, also gives the denominator of
a rational number.

Coef in a polynomial (or quolynomial).
(1) Suppose first that only one polynomial variable t has been adjoined. Then the syntax of
use is either Coef(x) or Coef(x, n). x can be any expression. n, the desired exponent, must
be a number. In the first form, without n, the leading coefficient is computed. Coef(x, n)
returns the coefficient of tn in the polynomial x. If x is a quolynomial, the denominator is
ignored.

To replace a coefficient, use Rcoef(x, n) := y; the coefficient of tn in x will be set to the
expression y. y must be a number.

If there are several polynomial variables, the coefficient desired is specified by listing the
exponents of the variables in precedence order, such as Coef(x, 1, 2).

80

In Rcoef(x, . . .) = y, x must be a polynomial and . . . must be suitable for y.
(2) If t is any polynomial variable, Coef(x, t, n) computes the coefficient in x of tn, as if t
were the highest level variable. In other words, if x were written out as a sum of monomial
terms, find all the terms containing exactly tn and factor out the tn. x must be a variable
name, either a scalar name or an array reference x[i]. This form cannot be used on the left
of an assignment. Especially useful for n = 0.

Killden(x) sets the denominator of x to 1 – it actually changes x.

Lterm(x) = leading term of polynomial x.

Lcoef(x) = leading numerical coefficient of polynomial x.

Flcoef(x) = leading field-element coefficient of polynomial x, when a quotient field has been
created.

Lmon(z) = leading monomial of z. Lmon has an optional second argument. First, Lmon(z)
returns the leading monomial of z. This is always an authenic monomial. If you think of a
multivariate polynomial in nested (recursive) form, Lmon recursively finds the first term in
each level and throws away all the other terms. Lmon(z, x), where x is a poly var, stops the
recursion at the level of x. For example, suppose u is the higher variable and t the lower
variable. Let z = (t2 + 3t+ 5)u2 + 5t ∗ u+ 7t− 2. Then Lmon(z) is t2 ∗ u2 but Lmon(z, t)
is (t2 + 3t+ 5)u2.

Mcoef(x, m1, m2) = monomially-oriented coefficient. m1 (and m2 if present) must evaluate
to a monomial; their numerical coefficient is irrelevant. Factor out m1 from all the terms in
x that contain it exactly, and return the factor. m2 (optional) specifies variables that must
occur with exponent 0 (as they cannot be included in m1!).

Mfact(x, m) = monomially-oriented factor. m must evaluate to a monomial; its numerical
coefficient is irrelevant. Factor out m from all the terms in x that it divides into and return
the factor. m may not contain any negative exponents.

Mono(a,b) to compare monomials; returns true iff a ≤ b. Numerical coefficients are irrele-
vant. Individual variables are ranked by order of their creation, latest is largest. Monomials
are ranked first by length = #variables, i.e. all univariates < all bivariates < all trivari-
ates, ... etc. Within equal #vars, ranking is by subset of vars. Within subset, ranking is
exponent arrays. See “Sort” below. This is the order that is used internally by Fermat for
certain algorithms.

Mons(x, [a]) dumps the monomials of x into a linear array [a]. If you want each monomial
stripped of its numerical coefficient, use Mons(x, [a], 1).

Nextvar: Post 2023: Nextvar returns the position (level) of the second variable in the poly
argument. If there is only one var, returns 0. If input is a number or field element, returns
-1.

PRoot(x) returns the pth root of x, when x ∈ the ground ring, a field of characteristic p.

Splice: Splice(s, c,m) multiplies c by xm and “tacks it in front” of s; it adds them, if there
is overlap. c becomes 1, s gets the answer. see Split.

Split is basically the dual of Splice. Invoke with Split(w, n, v) or Split(w, n). w and v are

81

existing scalar variables (including entries in an array). n is an integer. w becomes w mod
xn, where x is the highest variable. v (if present, optional) becomes w\xn.

Terms(x) = if x were written out as a sum of monomial terms, the number of such terms.
x must be a variable name, either a scalar name or an array reference x[i]. does not count
field variables (see next function).

Vars(x) = number of variables that actually occur in x.

Termsf(x) = counts the total number of terms when polymodding to create a field, counting
the field variables. If s = (t + 1)x + t − 1 where t is a field variable, Termsf(s) = 4 while
Terms(s) = 2.

Post 2023: Terms and Termsf can have a second argument to stop counting if a specified
limit is reached.

& l: Toggle switch to display each polynomial as a list of monomials.

&c: Enable full Hensel checking. This one is quite technical. If this flag is on (the default)
Fermat will double-check the results of certain Hensel Lemma GCD computations. Leaving
it off will slightly speed up GCD but introduce an extremely minute probability of GCD
giving the wrong answer. See &O next below.

&O: Toggle switch to disable the Hensel and Chinese Remainder Theorem (CRT) methods
for polynomial gcd. This is a good idea only when you are working over Zp for small primes,
say p < 30, and the degrees in each variable are fairly small. For such small primes, the
Hensel and CRT methods often fail, for “lack of room.”

” = derivative of a polynomial (or quolynomial) with respect to the highest precedence
variable (the last attached), as in x” (see also Deriv below).

GCD = greatest common divisor, as in GCD(x, y), x and y can be numbers or polynomials,
but not quolynomials. If numbers, the result is always positive, except that GCD(0, 0) = 0.
GCD(0, x) = |x| if x is a number not 0, and is 1 if x is a polynomial. If they are both
polynomials, the result always has positive leading coefficient. If in rational mode, the
result has all coefficients integral and content 1. In cases where the ground ring is a field,
the result has leading coefficient 1.

EGCD = extended GCD, as in EGCD(x, y, u, v), x and y are one-variable polynomials over
a finite field. Compute u and v s. t. u ∗ x+ v ∗ y = GCD(x, y).

Content = content of a polynomial; i.e., the GCD of all its coefficients. Content(x,i) is
content w.r.t. ith variable.

Numcon = numerical content, the GCD of all its numerical coefficients.

V ar. Followed by an expression that evaluates to a positive integer, as in V ar(i) returns
the ith polynomial variable, counting the highest (last created) as 1.

Height = the difference between the levels (ordinals) of the polynomial variables in an
expression.

Level = the ordinal position of the highest precedence polynomial variable in an expression.

Raise = Two forms: Raise(x) and Raise(x, i). In the first, replace each polynomial variable
with the variable one level higher. The second form allows the user to provide an expression
i that evaluates to a positive integer, and raises x that many levels, if possible.

Lower = The inverse of Raise. See above.

82

Divides(n,m) = does n divide evenly into m?

PDivides(n,m) = does n divide evenly into m? When n and m are multivariable polyno-
mials, this procedure attempts to answer quickly by substituting each polynomial variable
except the highest with a constant. PDivides says true iff these reduced polynomials divide
evenly. The constants are chosen with care. Nonetheless, this is a probabalistic algorithm.
An answer of False is always correct, but an answer of True has an infinitesimal probability
of being wrong.

SDivide(n,m) = does n divide evenly into m? “S” stands for “space-saving”. To save space
m is cannibalized. If n does divide m, m becomes the quotient; if not, m becomes 0. m
must be a variable name, not an expression. Not probabalistic. Use when you are virtually
certain that n divides m and you want the quotient in the fastest way.

Powermod(x, n,m) computes xn mod m. x must be a polynomial or integer, n must be a
positive integer, and m must be a monic polynomial or positive integer. You may omit the
third argument if you are in modular mode or polymodding. Note that n often needs to
be very large. In modular mode, this is a problem. The solution is that n must be either
a constant or must involve only variables that have been created in rational mode while
under “Selective Mode Conversion.”

Deriv(x, t, n) returns the nth derivative of x with respect to t, where t is one of the polyno-
mial variables.

Poly[a]: With x = the highest polynomial variable, Poly[a] takes an array OF NUMBERS
and yields Σ < i = 1, n > [a[i]xn+1−i], for a standard array. For a sparse array, only the
first entry in each row is used.

Splice: Splice(s, c,m) multiplies c by xm and “tacks it in front” of s; it adds them, if there
is overlap. c becomes 1, s gets the answer. see Split.

Split is basically the dual of Splice. Invoke with Split(w, n, v) or Split(w, n). w and v are
existing scalar variables (including entries in an array). n is an integer. w becomes w mod
xn, where x is the highest variable. v (if present, optional) becomes w\xn.

Totdeg(x, [a]) returns the array [a] of largest and smallest monomial degrees. [a] need not
exist before. x is a polynomial; laurent is ok. x is homogeneous iff a[1] = a[2].

WDeg(x, [a], n) “withdraw” the subpolynomial of x of total degree n in the variables listed
in [a]. [a] is an existing array. Each entry should be a single polynomial variable, in no
particular order. n is an integer. x is a polynomial; laurent is ok. “Variables” at field depth
or below should not be included in [a].

Vars(x) = number of variables that actually occur in x.

Factoring Polynomials: Pre 2023: Fermat allows the factoring of monic one-variable polyno-
mials over any finite field. The finite field is created by simply being in modular mode over
a prime modulus, or by additionally modding out by irreducible polynomials to form a more
complex finite field, as described in the section “Polymods.” Factoring into irreducibles or
square-free polynomials is possible, or polynomials can just be checked for irreducibility.

Factor(poly, [x]) or Factor(poly, [x], level). The factors of poly will be deposited into
an array [x] having two columns and as many rows as necessary. (The number of factors
(rows) is returned as the value of Factor.) In each row, the first entry is an irreducible

83

polynomial p(t) and the second is the largest exponent e such that p(t)e divides poly. In
the second form, level specifies the subfield to factor over. Examples are given earlier in
this manual. It is best for factoring to use as many variables t, u, . . . as possible in creating
the field.

Sqfree is similar to Factor except it produces factors that are square-free only.
Sqfree works for any number of variables and over QQ. Also, it works recursively by first

extracting the content of its argument and factoring it. Over quotient fields, the product
of all the factors in the answer may differ from the argument by an invertible factor.

Irred tells if its argument is irreducible, and, if not, describes the factorization. The
syntax is Irred(< poly >) or Irred(< poly >,< level >) (“level” is explained above). The
value returned is as follows:

−1 means can’t decide (too many variables, for instance).
0 means the argument is a number or a field element.
1 means irreducible.
n > 1 means the argument is the product of n distinct irreducibles of the same degree.
x, a poly, means x is a factor of the argument (which is therefore not irreducible).

Fermat uses the algorithms of H. Cohen, “A Course in Computational Number Theory,”
Springer Verlag, 1993, p. 123-130.

Post 2023: Factor and Irred have been significantly generalized. See p. 47 - 48.
Post 2023: Revpoly returns the reverse of its argument.

Matrices

Creation: An n×m matrix is created with the command Array x[n,m]. Access elements
in such an array via x[i, j] or via x[k], which returns the kth element in column-major order.
To refer to an entire matrix, use the syntax [x].

Sparse Matrices: Sparse matrices are implemented in Fermat. This is an alternative mode
of storing the data of the array. In an “ordinary” n × m matrix, nm adjacent spots in
memory are allocated. If an array consists of mostly 0’s, this is wasteful of space. In a
Sparse implementation, only the non-zero entries are stored in a list structure.

A Sparse matrix is created by following the creation command with the keyword “Sparse,”
as in Array x[5, 5] Sparse. There is no size limitation in Fermat. An array [x] already
created can be converted to Sparse format with the command Sparse [x]. There is no
requirement that [x] actually have a certain number of zeros.

Indexing: One has a choice of how to index the first element of an array. The default in
Fermat is x[1]. This can be changed by entering the command &a, which switches the initial
array index to 0. Entering &a again switches back to 1. Note that this is not a property of
any particular array, but of how all arrays are indexed.

Dynamic Allocation of Arrays: Arrays that are no longer needed can be freed to provide
space for new arrays. This is done with the cancel command, whose syntax is @[x], or, to
free several, @([x], [y], [z]).

84

Arithmetic: Most of the ordinary arithmetic built-in functions can be applied to arrays. See
Appendix 2, last column. For example, [x]+[y] is the sum. 2∗ [a], or [a]∗2, multiplies every
component of [a] by 2. [a] + 3 adds 3 to every component of [a], and so forth. [a] := [1] sets
an already existing square matrix [a] equal to the identity. [a] := 1 sets every entry to 1.
[z] := [x] ∗ [y] is the product. [z] := 1/[y] is the inverse. Matrix exponentiation (including
inverse) is just like scalars (but see Altpower below), such as [z] := [x]ˆn.

Arithmetical Expressions: Like numerical expressions, such as [z] := [a] ∗ ([x] + [y]− [1]).

Parameters: Matrices may be parameters in functions.

Subarrays: Fermat allows subarray expressions. That is, part of an array [c] can be assigned
part of an array [a]. For example, [c[1 ∼ 4,2 ∼ 6]] := [a] sets rows 1 to 4 and columns 2 to
6 of [c] equal to [a]. This assumes that [a] is declared to be 4 × 5 and [c] is at least 4 × 6.
(Here ∼ is shift-‘). In defining the subarray, if one of the coordinate expressions is left out,
the obvious default values are used. For example, if [c] has four rows then [c[, 2∼ 6]] := [a]
is equivalent to the above. Similarly, one can use expressions like [c[3∼ ,2∼ 6]] := [a] or [c[∼

4,2∼ 6]] := [a], in which case the default lower row coordinate is the array initial index, 0
or 1.

In subarray assignments, a vector declared to be one-dimensional (like a[5]) is treated
as a column vector, i.e., a[5, 1].

As of April 2016 in 64 bit, subarray can be used with Sparse matrices. Minors is similar;
see below.

Matrix Built-in Functions:

Det, is used in several ways to compute a scalar from an array argument. If used by itself
on a square matrix, Det is determinant. Det#([x] = a) returns the number of entries in [x]
that equal a. Similarly Det#([x] > a) and Det#([x] < a) compute the number of entries of
[x] larger or smaller than a. If any entry is a polynomial, an error results. Det∧[x] returns
the index of the largest element of [x] (in column major order if [x] is a matrix). Det [x]
returns the index of the smallest element of [x]. Det + [x] returns the index of the smallest
nonzero element of [x], or −1 if there is no such element.

Determinant: Fermat uses four basic methods to compute determinant: expansion by mi-
nors, Gaussian elimination, Lagrangian interpolation, and reducing modulo n for some n’s.
The last of these is used for matrices of integers or polynomials with integer coefficients.
The actual determinant can be reconstructed from its values modulo n (for a “good” set of
n’s) by the Chinese Remainder Theorem (see Knuth volume 2). Alternatively, it is often
possible to work modulo an easily computed “pseudo determinant” known to bound the
actual determinant. Gaussian elimination is applicable in all situations – all one needs is the
ability to invert any nonzero element in a matrix. If the matrix is small enough, expansion
by minors is faster (see &D.) Gaussian elimination can be nontrivial and even problematical
in modular arithmetic over a nonprime modulus, in polynomial rings, and in polynomial
rings modulo a polynomial. Fermat has heuristics to guide its choice of method.

When the matrix has all polynomial entries, Fermat has two other methods. It may also
compute the determinant with Lagrangian interpolation: constants are substituted for the

85

highest polynomial variable everywhere in the matrix, and so on recursively. The algorithm
is probabalistic, with very high probability of success. It is very fast, especially for two or
more variable polynomials.

Nonetheless, if there are many polynomial variables and the matrix is sparse or has a
regular pattern of zeros, expansion by minors can be by far the fastest method. Setting the
determinant cutoff (with &D) at least as large as the number of rows will force Fermat to
do this method. This is true of Sparse matrices as well as “ordinary.”

Secondly, Fermat uses the well-known Gauss-Bareiss method (for a matrix of all poly-
nomial entries).

Fermat has heuristics to choose among the methods, but the user may override them
and force a particular method. Assuming an m × m matrix of all polynomial entries, if
m is more than three and the user has left &D = −1, the default method is Lagrangian
interpolation, unless the “mass” of the matrix is very small. The “mass” is estimated by
a heuristic and compared to a cutoff. The user can change the cutoff with the command
&L. The default is 5000. Therefore, to turn off Lagrangian interpolation, give a very large
value (up to 231 − 1). To then choose Gauss-Bareiss, set the command &K = 1. This is a
bit confusing, so summary:

To force Gauss-Bareiss, set &K = 1 and &D = 2.
To force Gaussian elimination, set &K = 0 and &D = any d > 0. At the d× d stage, it

will switch to expansion by minors.
If m ≥ 4, to force Lagrangian interpolation, set &D = −1 and &L = 1.

LCM = the least common multiple of all the denominators in a matrix. “Denominators”
means those of rational numbers or of expressions like (t2 +3t+1)/17 or 3/(2t). Use this to
clear a matrix of its integer denominators. The denominator of 2/(3 + 2t) is ignored, since
you can’t clear it by multiplying [x] by any number.

Adjoint = adjoint of a square matrix.

Chpoly = the characteristic polynomial of a square matrix. The syntax of the command
and the method used depend on whether the matrix is sparse or “ordinary.”

With the ordinary matrix storage scheme, LaGrange interpolation is used when the
matrix consists of all numbers. It is to your advantage to clear the matrix of all numerical
denominators before invoking Chpoly. To do LaGrange interpolation, Fermat computes the
necessary determinants using the Chinese Remainder Theorem. To do so, it must make an
initial estimate of the absolute value of the determinant. The estimate is often rather liberal.
The determinants in question are simply f(ci), where f is the characteristic polynomial and
{ci} is a set of “sample points.” The user may be able to supply a better bound on |f(ci)|,
so there is a second optional argument to Chpoly, a polynomial g such that |f(t)| ≤ |g(t)|
for all t. The syntax is Chpoly([x], g).

With sparse matrices, a clever way to compute characteristic polynomial is the Leverrier-
Faddeev method. This method often loses to the standard one, det([x] − λI), but it can
be faster for matrices that contain quolynomials. The user may choose the method with
the second argument: Chpoly([x], n) selects the standard method when n = 0 and the
Leverrier-Faddeev when n is any other integer.

As of October 2009, the LaGrange modular determinant coefficients can be dumped
to a file, rather than stored in RAM. This can be a big space saving when doing a very

86

large computation. The command is &(L=1). In other words, if the highest precedence
variable is x and lower ones are y, z, . . ., and if a determinant cnx

n + cn−1x
n−1 + . . . is being

computed with LaGrange interpolation, the coefficients c0, c1, ..., cn (which are polynomials
in y, z, . . .) will be dumped to the output file to save RAM.

Minpoly: The “modifed Mills method,” a fast probabalistic algorithm that computes the
minimal polynomial M(t) of a sparse matrix of integers, or, more precisely, a factor of the
minimal polynomial. If one of the roots of M(t) is 0, the associated factor t of M(t) will not
show up, but other factors may not show up either. This algorithm is built into Fermat via
the command Minpoly. Syntax of use is Minpoly([a], level, bound). [a] is the matrix, which
must be Sparse. level = 0, 1, 2, 3, 4 is a switch to tell Minpoly how much effort to expend in
its basic strategy. Larger levels will take longer, but have a better chance of giving the entire
minimal polynomial. bound is an integer at least as big as any coefficient in the minimal
polynomial. This argument can be omitted, in which case Fermat will supply an estimate
based on the well-known Gershgorn’s Theorem.

Repeated calls to Minpoly may return different answers. It may be worthwhile to run it
several times and compute the l. c. m. of the answers.

Sumup = add up the elements of an array.

Trace = trace of a matrix.

Altmult. Multiply two matrices using the algorithm of Knuth volume II, p. 481. A big
time saver when multiplication in the ring is much slower than addition. Especially good
for Polymods (see that chapter). Syntax is Altmult([x], [y]).

Altpower. Uses Altmult to take a matrix [x] to the power n. Syntax is Altpower([x], n).

MPowermod([x], n,m) computes [x]n mod m. [x] contains only polynomials or integers, n
must be a positive integer, and m must be a monic polynomial or positive integer. You may
omit the third argument if you are in modular mode or polymodding. Note that n often
needs to be very large. In modular mode, this is a problem. The solution is that n must
be either a constant or must involve only variables that have been created in rational mode
while under “Selective Mode Conversion.”

To see the effect of this command, try creating a 20× 20 matrix of random integers, let
n = 100 and m = 108. Compute [x]n mod m both ways.

Trans = transpose matrix, as in [y] := Trans[x].

STrans = transpose a matrix in place, as in STrans[x].

Diag refers to the diagonal of a matrix, as in Diag[y] := [x]. [x] is considered a linear array.
The diagonal of [y] becomes the entries of [x]. If the name [y] does not yet exist, a new
square matrix will be created with off-diagonal entries 0. If square matrix [y] of the right
size (i.e., rows equal to the number of entries of [x]) does exist then the off-diagonal elements
are not changed.

Dually, Diag can be used on the right side of an assignment, as in [y] := Diag[x], which
sets [y] equal to a linear array consisting of the diagonal elements of [x]. [x] does not have
to be square.

To create a diagonal matrix with all entries equal to a constant, say 1, you can use the
easier form [x] := [1], if [x] already exists as a square matrix.

87

Cols[x] = number of columns of array [x].

Deg = number of elements in an array. Deg[x] = total size of array [x] (rows × columns).

[<] = last computed array. Fermat has a hidden system array. If you type the command
[x] + [y], arrays [x] and [y] will be added and, since you didn’t provide an assignment of
the result, the result will go into the system array. You can later access it by typing, for
example, [z] := [z] + [<]. Subarrays cannot be used with <.

= concatenate arrays; glue two arrays together to form a larger one, as in [z] := [x] [y].
Neither array can be Sparse.

Iszero = is the argument (an array) entirely 0? If so, return 1, else return 0. Syntax:
Iszero[x].

Switchrow = Interchange two rows in an array. Syntax: Switchrow([x], n,m).

Switchcol = Interchange two columns in an array. Syntax: Switchcol([x], n,m).

Normalize = convert to a diagonal matrix. The matrix must not be Sparse. If requested,
Fermat will return the change of basis matrices used in normalizing. Possible invocations
include Normalize([x]) and Normalize([x], [a], [b], [c], [d]). In the second case, matrices [a],
[b], [c], and [d] will be returned that satisfy [a] ∗ [x′] ∗ [b] = [x], where [x′] is the original [x],
and where [c] = [a]−1 and [d] = [b]−1. The value returned by Normalize is the rank of [x].

You can omit any of the change of basis matrices. For example, Normalize([x], , [b],,
[d]) and Normalize([x], [a], , [c]). Every comma promises that an argument will eventually
follow.

Colreduce = Column reduce a matrix. The matrix may NOT be Sparse. By column ma-
nipulations, the argument is converted to a lower triangular matrix. If requested, Fermat
will also return the change of basis (or conversion) matrices that it used in normalizing.
Possible invocations include Colreduce([x]) and Colreduce([x], [a], [b], [c], [d]). In the second
case, matrices [a], [b], [c], and [d] will be returned that satisfy [a] ∗ [x′] ∗ [b] = [x], where [x′]
is the original [x], and where [c] = [a]−1 and [d] = [b]−1. The value returned by Colreduce
is the rank of [x]. As with Normalize, you can omit any of the change of basis matrices.
Colreduce cannot be used on sparse arrays. In addition a function Pseudet is implemented.
Pseudet([x]) computes a “pseudo-determinant,” a nonzero determinant of a maximal rank
submatrix. It returns the rank of the matrix and leaves the matrix in diagonal form (so [x] is
changed). The product of the diagonal entries is (up to sign) the “pseudo-determinant.” The
optional form Pseudet([x], [rc]) returns a 2 × rank[x] matrix [rc] specifying the rows (first
row of [rc]) and columns (second row of [rc]) that constitute the maximal rank submatrix.
A second optional form is Pseudet([x], [rc], k) or Pseudet([x], , k). Integer k specifies the last
row/col to pivot on. The entries beyond spot [k, k] are left.

Rowreduce = Row reduce a matrix. The matrix must be Sparse. Exactly like Colreduce but
for sparse arrays and row reduction.

Smith = Put a matrix of integers into Smith normal form. The matrix may be Sparse. This
function can only be used in rational mode, and assumes that every entry is an integer. (Any
denominator encountered will be ignored, with unpredictable results.) By row and column
manipulations, the argument is converted to a diagonal matrix of non-negative integers.

88

Furthermore, each integer on the diagonal divides all the following integers. The set of such
integers is an invariant of the matrix.

As with Normalize, you can omit any of the change of basis matrices.
If you do not require any conversion matrices then it is possible to greatly speed up

Smith in most cases by working modulo a “pseudo-determinant”, a multiple of the gcd of
the determinants of all the maximal rank minors (see Kannan and Backem, SIAM Journal
of Computing vol 8, no. 4, Nov 1979). Do this in Fermat with the command MSmith. For
relatively small matrices or sparse matrices, it’s faster to forgo the modding out. Fermat
will compute the pseudo-determinant if the matrix is Sparse. If you already have a pseudo-
determinant pd, use the syntax MSmith([x], pd). (If the matrix is not Sparse, you must use
the latter method. Pseudet may be helpful.)

Hermite = Column reduce a matrix of integers. The matrix may be Sparse. This function
can only be used in rational mode, and assumes that every entry is an integer. By column
manipulations and row permutations, the argument is converted to a lower triangular matrix
of integers. All diagonal entries are non-negative. This is often referred to as Hermite normal
form.

If requested, Fermat will also return the integer change of basis (or conversion) matrices
used in normalizing, exactly as in Smith.

Be aware that if the matrix is “large” and “dense” a horrendous explosion is possible in
the intermediate entries, and in the entries of the conversion matrices.

Hampath = a pretty fast algorithm for finding a Hamiltonian path in a graph. The algorithm
is from an exercise in a text book by Papadimitriou. Given the n×n adjacency matrix of a
simple graph, the program constructs an n2 + 1×n2 + 1 sparse matrix. Each entry is either
0, 1, or a polynomial variable xi, i = 1, . . . , n. The graph has a Hamiltonian path iff the
term x1x2 · · ·xn appears in its determinant. We do not actually compute the determinant.
If there is a Hamiltonian path, this method often proves it very quickly. Hampath returns
1 or 0 for path or no path.

The basic invocation is Hampath[w] where [w] is the adjacency matrix, symmetrical
with each entry either 0 or 1. However, on any graph of more than 15 or so nodes, it is
better to use the alternate form Hampath([w], k), where k is a positive integer. k controls
the probabalistic search by terminating a search tree once more than k leaves in the tree
are visited with no resolution, and starting over. A reasonable heuristic for k is around 2n2.

Disclaimers: Hampath does not first check elementary properties of a graph that might
easily decide the issue, like connectivity. That’s up to the user. I make no claims about
efficiency relative to other methods.

Redrowech = the reduced row echelon form, for elementary matrix equations of the form
AX = B. (Other Fermat commands do column manipulations as well, which could be
used to solve AX = B but take an extra step.) Invoke with Redrowech([a]), where all
columns but the last in [a] represent the matrix A and the last represents B (i.e., Redrowech
never pivots on the last column.) Alternately, Redrowech([a], [u], [v]) will return in [u] the
transition matrix used in normalizing [a]. [v] is [u]−1. As in other similar Fermat commands,
you can also do Redrowech([a], , [v]).

Minors: extract minors from sparse arrays. The syntax is e.g. [y] := Minors([x], [r], [c]).
[x] is an existing sparse array. [r] and [c] are existing ordinary arrays specifying the rows

89

and columns to be extracted. The result is stored in [y], which will be a new sparse array
of the right dimensions. [x] is untouched.

FFLU and FFLUC are for fraction-free LU factorization of matrices. See the two articles
in the September 1997 SIGSAM Bulletin: “Fraction-free Algorithms for Linear and Poly-
nomial Equations,” by Nakos, Turner, and Williams; and “The Turing Factorization of a
Rectangular Matrix,” by Corless and Jeffrey. See especially Theorem 4, p. 26 of the latter.
FFLU is invoked as: FFLU([x], [p], [l], [a], [b]). [x] is the n × m matrix to be factored.
Presumably [x] contains integers or polynomials, but this is not enforced. [p] is an n × n
diagonal matrix consisting of the pivots used, [p] = diag(p1, p2, ..., pn−1, 1). [l] is the unit
lower triangular matrix, the first factor. [a] (optional) is the n × n permutation matrix of
row swaps. [b] (optional) is [a]−1. At the end, [x] is in upper triangular form. Let [z] be a
copy of the original [x]. If [f] and [g] are the matrices called f1 and f2 in the Corless and
Jeffrey article, then at the end one has [f] ∗ [a] ∗ [z] = [l] ∗ [g] ∗ [x]. Note that [f] and [g] are
not computed by FFLU ; however it is obvious how to get them from [p]. Note also that
[p] is not necessarily the diagonal of [x]: if columns of 0s are encountered along the way, [x]
will be in row-echelon form and may have 0s on its main diagonal.

FFLUC allows column swaps as well as row swaps. In this way, the size of the pivots can
be further reduced. FFLUC is invoked as: FFLUC([x], [p], [l], [a], [b], [c], [d]). As above,
[x] is the n ×m matrix to be factored. [p], [l], [a], and [b] are the same as above. At the
end, [x] is in upper triangular form. [c] and [d] (optional) are permutation matrices coming
from column swaps ([d] is [c]−1). Let [z] be a copy of the original [x]. If [f] and [g] are
the matrices called f1 and f2 in the Corless and Jeffrey article, then at the end one has
[f] ∗ [a] ∗ [z] ∗ [c] = [l] ∗ [g] ∗ [x]. [p], [l], [a], etc. need not be existing matrices when the
function is invoked. Matrices of those names with the right size will be created at the
end. Saying that [a], [c], etc. are optional above means that they may be ommitted, as for
example FFLUC([x], [p], [l], [a], , [c]). Note the space to indicate no [b].

Reverse[a] will reverse the elements in Array a[n]. If [a] has one column, this is obvious.
Otherwise, the exact behavior depends on whether [a] is a standard array or a sparse array.
For standard, each a[i] is swapped with a[n+1−i], where you think of [a] as in column-major
order. For sparse [a], the rows are swapped.

Sort: sort an (already existing) array [a] of polynomials, actually monomials. [a] can be
either sparse or ordinary. The first column holds the keys. For ordinary arrays, every entry
in column 1 must have been assigned a value. 0 is a legal value. For sparse arrays, it is
more subtle: every row must have an entry, and the first entry in each row is taken as the
key. (Recall that sparse arrays never contain 0). To avoid confusion, the best policy is to
have the first column contain the key. As swaps are made, the entire row is swapped. The
algorithm is quicksort. Quolynomials are allowed; denominators are ignored.

The order is a monomial order, the one built into Fermat via the Mono command. In
comparing a and b, only the leading monomials are compared - the ones you see first when
they are displayed. Numerical coefficients are irrelevant. All numbers are considered equal.
To illustrate, create a multivariate polynomial w, do Mons(w, [a], 1), then Sort[a]. Syntax:
Sort[a].

Sparse Access Loops

90

There is a need for a way to work efficiently with sparse arrays. For example, suppose
you have a sparse array of 60000 rows and 50000 columns with only 10 or so entries in each
row (this is quite realistic). Suppose you wanted to add up all the entries. Naively, one
could write something like:

for i = 1, 60000 do for j = 1, 50000 do sum := sum+ x[i, j] od od
But this will do 3,000,000,000 additions, almost all of which are adding 0! This is a

preposterous waste of time. The solution is “sparse column access loops” for sparse arrays.
The syntax is, continuing the example above,

for i = 1, 60000 do for j = [x]i do sum := sum+ x[i, j] od od.
“for j = [x]i do” means find the ith row of [x] and let j run down it – of course encoun-

tering only the entries actually there! So j takes on whatever the column indices are in
which x[i, j] 6= 0. [x] must be an existing sparse array, and i must have a value suitable for
[x] at the start of the loop. More generally, one may use the syntax: for j = [x]i,k do
Here i and k both refer to rows of the sparse matrix [x]. At the start of the loop, all nonzero
column coords in both rows are found. Then as the loop proceeds, j runs through those
values in order. Any number of row indices is allowed. There is no analogous procedure for
“sparse row loops” due to the way Fermat stores sparse matrices. If necessary, transpose
the matrix.

Dixon Resultant Technique

To help compute the Dixon resultant, a feature has been added to Det. It may be used
when a system of equations exhibiting symmetry leads to a determinant that is a polynomial
in one variable, say t, over Z. Set the flags to select LaGrange interpolation. The syntax is
Det([m], dr, power1, power2, exp). [m] is the matrix in question (must be Sparse).

Note: the second degree, power2, was added in February 2008.
Type 1: the determinant will be of the form dr ∗ f(t)exp, and of degree power1. dr

is a known divisor of the determinant, a “spurious factor.” Knowing dr, exp, and power1
enables Fermat to interpolate for f very efficiently. Type 2: the determinant will be of the
form dr ∗ f(texp), and of degree power1. Signal this type by setting exp to be negative;
i.e. enter −5 instead of 5. exp must be either odd or a power of 2. power2 is the degree
of the determinant in the second highest variable. Leave this field blank if there is no
second variable, or you don’t know the degree. For an introduction to the Dixon method,
see: Lewis, R. H. and P. F. Stiller, “Solving the recognition problem for six lines using the
Dixon resultant,” Mathematics and Computers in Simulation 49 (1999) p. 205-219.

As of March 2007, Det([m], dr, power1, power2, exp) will work recursively if more than
one variable is present in array [m]. Note, however, that the exp field is ignored if [m] is
not Sparse.

91

Appendix 5. Finite Fields GF (28) and GF (216)

As of version 3.4.7 Fermat implements the finite field GF (28) in an efficient way. The
256 elements are represented as bit strings, simply the integers 0 - 255 in one byte in the
obvious way. These integers are mapped in 1-1 fashion to the AES-Rijndael implementation
of this field, Z/2 [t] / < t8 + t4 + t3 + t + 1 > (see The Design of Rijndael: AES - The
Advanced Encryption Standard, Information Security and Cryptography, by Joan Daemen
and Vincent Rijmen.) The mapping is: f in Z/2 [t] / < t8 + t4 + t3 + t + 1 > becomes
f#(t = 2); i.e. f evaluated at t = 2.

Elements are added by exclusive-or. They are multiplied and inverted by table lookup.

The field GF (216) is built on top of GF (28) and is likewise just the first 65536 bit strings
0 - 65535. The first (lower) byte is GF (28). Elements are added by exclusive-or. They are
inverted by table lookup and multiplied by a table of logarithms. This is slightly slower
than the table lookup of GF (28).

To make these fields the ground ring in Fermat, simply do &p followed by 256 or 65536.

The problem for the user (speaking from my own experience) will be forgetting that
there is no useful homomorphism from Z to these fields. One must be scrupulous in using
& m and (...) to suppress modular!

Example:

BAD: for i = 1, m do

if n = i+1 then ;; i+1 is NOT 1 more than i (!)

GOOD: for i = 1, m do

if n = _(i+1) then ...

BAD: rc := 1 + Sigma<j=1,n> [Deg(za,j)*exp[j]]

GOOD: rc := 1 + _Sigma<j=1,n> [Deg(za,j)*exp[j]]

Technically, over any modular ground ring, one should use the & m or (...) as above,
but I at least usually use large primes p in Z/p, maybe 44449, so no harm results – usually.
But over GF (28) and GF (216), one needs constant vigilance. For example, 2 is not 2 (!)

Remember that modular is automatically suppressed in for-loops, exponents, and array
indexes. So these should be OK:

for i = 1, 2n do...

x := y^(i+2);

s := c[2*n+1];

It is fine to attach poly vars on top of these ground fields. However, do not do &P on
top of that. I have not thoroughly checked that.

92

Appendix 6. New Features Added Between June 2005 and April 2021

In roughly chronological order. Most of these features are described earlier in this
manual too. The new parts are emphasized here.

Especially note monomial multiply and Zippel GCD.

& s: Suppress/don’t suppress display of long polynomials.

& t: Toggle switch to turn on/off a certain fast probabalistic algorithm to test if one
multivariate polynomial divides another over ground ring Z. Rarely, this technique can fail,
in which case you will see a “Fermat error” about “number in trial poly divide”. Then turn
it off.

& G: sort the heap garbage. This can be added to the user’s functions periodically
during memory intensive polynomial calculations. A noticeable speedup occurs when used
between repetitions of an intensive calculation.

&v: List all current variables. ... Only about the first 150 lines of a large polynomial
are shown, unless & s has been set.

To help compute the Dixon resultant, a feature has been added to Det. It may be used
when a system of equations exhibiting symmetry leads to a determinant that is a polynomial
in one variable, say t, over Z. Set the flags to select LaGrange interpolation. The syntax is
Det([m], dr, power1, power2, exp). [m] is the matrix in question (must be Sparse). . . .

The new part is the second degree, power2.

As of March 2007, Det([m], dr, power1, power2, exp) will work recursively if more than
one variable is present in array [m]. Note, however, that the exp field is ignored if [m] is
not Sparse.

STrans = transpose a matrix in place, as in STrans[x]. Much faster than Trans.

Isprime(n) = is n prime? 1 means n is prime, else it returns the smallest prime factor.
n can be up to 263 − 1. The algorithm is elementary, so it’s slow beyond 250.

Using &J adjoins new variables “above” the previous ones. However, as of January 2009,
it is possible to adjoin a polynomial variable “at the bottom.” So if, say, x and y exist, y
later or “above” x, one can do &(J>z), which will insert z as the lowest variable (below x)
rather than the highest. You cannot cancel from the botttom.

Lcoef = the leading coefficient of a polynomial.

Nlcoef = the leading numerical coefficient of a polynomial. Unlike Lcoef, always returns
a number.

Ntcoef = the trailing numerical coefficient of a polynomial. That number is always an
actual coefficient, so can never be 0.

Zncoef = the “last” numerical coefficient of a polynomial. It will be 0 if there is no
constant term.

Pivot Strategies: As of January 2009 there are options for the heuristics that direct the
pivot choice in the normalization of matrices. This can have a large effect on time and

93

space, though often it does not. The heuristic is set with the command &u or &(u = val).
val is an integer from 0 - 5. The size or mass of a potential pivot can be measured by just
its number of terms (called term# below), or by one of two mass heuristics (called mass0
and mass1 below).

Setting val =
0 is the default previous heuristic, which selects the least massive entry by the original

mass0 heuristic.
1 selects the ‘lightest’ entry where weight = term# + sum of term# for the entire row

entry is in.
2 selects the ‘lightest’ entry where weight = mass0 + sum of term# for the entire row

entry is in.
3 selects the ‘lightest’ entry where weight = mass1 + sum of term# for the entire row

entry is in.
4 selects the ‘lightest’ entry where weight = term#.
5 is like 3 but also counts the weight of the column an entry is in.

Termsf(x) = counts the total number of terms when polymodding to create a field, counting
the field variables. If s = (t + 1)x + t − 1 where t is a field variable, Termsf(s) = 4 while
Terms(s) = 2.

As of October 2009, the LaGrange modular determinant coefficients can be dumped
to a file, rather than stored in RAM. This can be a big space saving when doing a very
large computation. The command is &(L=1). In other words, if the highest precedence
variable is x and lower ones are y, z, . . ., and if a determinant cnx

n + cn−1x
n−1 + . . . is being

computed with LaGrange interpolation, the coefficients c0, c1, ..., cn (which are polynomials
in y, z, . . .) will be dumped to the output file to save RAM.

As a time- and space-saving aid, one can add the ∧ when saving, as in
!!(&o, ‘q := ’, ∧q, ‘;’). Without the ∧, q is duplicated in the course of expression

evaluation. That might be a big waste of time or space.

The display of elapsed time changed in 2010. When timing is enabled, two numbers are
displayed, called ”Elapsed CPU time” and ”Elapsed real time”. CPU time is just the CPU
time used by Fermat. This is what has been displayed by Fermat in most previous versions.
However, the number is meaningful only up to about an hour. For much longer times, the
value shown is meaningless. Elapsed real time is wall clock time, just as it sounds. If the
elapsed real time is more than 5 seconds, then it is also displayed.

Sort: sort an (already existing) array [a] of polynomials, actually monomials. [a] can be
either sparse or ordinary. The first column holds the keys. For ordinary arrays, every entry
in column 1 must have been assigned a value. 0 is a legal value. For sparse arrays, it is
more subtle: every row must have an entry, and the first entry in each row is taken as the
key. (Recall that sparse arrays never contain 0). To avoid confusion, the best policy is to
have the first column contain the key. As swaps are made, the entire row is swapped. The
algorithm is quicksort. Quolynomials are allowed; denominators are ignored.

The order is a monomial order, the one built into Fermat via the Mono command. In
comparing a and b, only the leading monomials are compared - the ones you see first when
they are displayed. Numerical coefficients are irrelevant. All numbers are considered equal.

94

To illustrate, create a multivariate polynomial w, do Mons(w, [a], 1), then Sort[a]. Syntax:
Sort[a].

Mono(a,b) to compare monomials; returns true iff a ≤ b. Numerical coefficients are irrele-
vant. Individual variables are ranked by order of their creation, latest is largest. Monomials
are ranked first by length = #variables, i.e. all univariates < all bivariates < all trivari-
ates, ... etc. Within equal #vars, ranking is by subset of vars. Within subset, ranking is
exponent arrays. See “Sort” below. This is the order that is used internally by Fermat for
certain algorithms.

Splice: Splice(s, c,m) multiplies c by xm and “tacks it in front” of s; it adds them, if there
is overlap. c becomes 1, s gets the answer. see Split.

Split is basically the dual of Splice. Invoke with Split(w, n, v) or Split(w, n). w and v are
existing scalar variables (including entries in an array). n is an integer. w becomes w mod
xn, where x is the highest variable. v (if present, optional) becomes w\xn.

Time displays the time and date. Visible on startup.

Vars(x) = number of variables that actually occur in x.

SDet = “Space-saving determinant.” Space is saved when computing over ground ring Z
using LaGrange interpolation and the Chinese Remainder Theorem. Fermat has aways used
the the CRT algorithm from Knuth volume 2 on page 277 (exercise 7). The advantage is
one can do everything “on the fly.” The disadvantage is that if one will need, say, 50 primes,
then every determinant modulo the 50 primes is stored until the end, when the answer is
computed over Z by combining them. That might need too much space. Instead, SDet
implements formulas 7-9 on page 270 of Knuth.

The disadvantage is it can’t be done on the fly: one needs to know in advance how many
primes will be needed. The user must (over)estimate this number.

Input: integer and a square matrix of polynomials. Output: determinant. Call:
SDet(n, [m]). n = how many primes will be needed. SDet is not guaranteed to work
with the more sophisticated options of Det, i.e. Det([m4], r, d1, d2).

Toot: sound the system beep.

As of 2010, a new arithmetic command has been added for when a function is in Integer
mode: x :∗ y to set x := x ∗ y; NB: this only works in Integer.

Reverse[a] will reverse the elements in Array a[n]. If [a] has one column, this is obvious.
Otherwise, the exact behavior depends on whether [a] is a standard array or a sparse array.
For standard, each a[i] is swapped with a[n+1−i], where you think of [a] as in column-major
order. For sparse [a], the rows are swapped.

Poly[a]: With x = the highest polynomial variable, Poly[a] takes an array of numbers and
yields Σ < i = 1, n > [a[i]xn+1−i]. At least that is what happens on a standard array. For
a sparse array, only the first entry in each row is used. So again, if [a] has one column Poly
produces what you’d think.

400,000 pointers have been set aside for the array of arrays, up from the previous 2000. It is
now possible to assign array of arrays pointers, as %[1] := %[2]. This is good for swapping
data. One can also do [c] := [%[1]].

95

The action of Totdeg has changed. New WDeg performs the old Totdeg. See Appendix Four.

Monomial-oriented multiplication: October 2013. Version 5.0 of 64 bit Fermat im-
plements a new method for multiplication of multivariate polynomials. This provides very
impressive speedups in real problems, often 40 - 70%, even more in some test cases. The
method can be modified by the user command & o.

Basically, the idea is to store each term, or monomial, of a multivariate polynomial in a
single node instead of storing the polynomial as a recursive structure of nodes at one level
pointing to nodes at a lower level.

For example, consider (x2 + y2 + z3 + 1)3. This polynomial has 20 terms. As a recursive
list structure it is z9 + (3y2 + 3x2 + 3)z6 + (3y4 + (6x2 + 6)y2 + 3x4 + 6x2 + 3)z3 + y6 +
(3x2 + 3)y4 + (3x4 + 6x2 + 3)y2 + x6 + 3x4 + 3x2 + 1. This means that at the highest
level, z, there are four nodes, one each for z9, z6, z3, and z0. Each node has a pointer to its
coefficient, a polynomial at the next level down, for y. The coefficient of z6 is the polynomial
3y2 + 3x2 + 3. That has two nodes, one for y2 and for one for y0. The coefficient of y0 is
the polynomial 3x2 + 3, which is one more level down, and so forth. (Eventually there is
a pointer for the numerical coefficient, stored in a different kind of node.) This has always
been the storage structure of polynomials in Fermat. It has many advantages, one of which
is that any exponent may be easily accommodated. Another is that multiplication is easily
written as a recursive program; each level is handled in the same way as all others.

However, the disadvantage of the recursive structure is that there are many links to
follow, and much space is devoted to storing these links.

In contrast, the monomial structure stores the above example as a list of twenty nodes,
each of which contains all the exponents for that term. The polynomial is thought of as
z9 + 3y2z6 + 3x2z6 + 3z6 + 3y4z3 + 6x2y2z3 + 6y2z3 + 3x4z3 + 6x2z3 + 3z3 + y6 + 3x2y4 +
3y4 + 3x4y2 + 6x2y2 + 3y2 + x6 + 3x4 + 3x2 + 1. For example, 6x2y2z3 is a node containing
a pointer to the numerical coefficient, then the three exponents 2 2 3. These are stored
as fields within a single long integer. For example, if one knew that only three-variable
polynomials would ever be considered, one could use a 32 bit integer to store all three, with
the exponent for x (lowest precedence) going in spots 0-9, for y in spots 10-19, and for z in
spots 20-29. The upper two spots 30 and 31 would be unused.

The advantage is that multiplication of terms is now very easy – just add the nodes
containing the three exponents, a single 32 bit integer addition! (Of course, one multiplies
the coefficients too.) This is fine as long as one does not encounter an exponent as large
as 210 = 1024. Then disastrous overflow would occur, perhaps crashing Fermat, or worse,
introducing undetected nonsense.

In Fermat we expect to use far more than three polynomial variables. I have therefore
implemented this idea with 128 bit long long integers instead of 32 bit integers. The user
may choose the “monolength”, the number of bits allocated to each variable’s exponent
(it was 10 in the example above) with the command & o. Fermat will then compute and
display monovars = 128 div monolength, mononum = 2monolength, and monogap = 128 -
monolength * monovars. The default monolength is 9.

If after the & o prompt you enter a value > 30 or < 5, the monomial multiplication
method is disabled; multiplication will proceed recursively. Since legal values are between 5
and 30, possible monovars are between 25 and 4. It is probably unwise to use a monolength
< 7, so the most polynomial variables that can reasonably be multiplied by this method is

96

18. Therefore, one may well have a situation where one has more polynomial variables than
mononvars. This is fine: Fermat begins the standard, recursive method, and switches when
the depth of recursion allows it (depth remaining ≤ monovars) for multiplying coefficients.

There is no guarantee against overflow, other than the wisdom of the user. If overflow
is suspected, there will be warning messages displayed. If enough messages occur, an error
occurs.

There is no change in addition or subtraction of polynomials. The user’s variables are
still stored in the recursive structure. When the need to multiply arises, they are converted
to the new format, multiplication is done, and the answer converted to the recursive form
for storage.

What is all this for? Speed! Unless one has only two variables, or one of the multiplicands
has few terms, say < 60, a noticeable improvement in speed results. On real problems taking
many minutes to complete involving thousands of multiplications of polynomials with six
or more variables, I routinely see 30 - 80% improvements.

Zippel-like GCD algorithm: As of early 2017, Fermat 6.* implements a Zippel-like
interpolation algorithm for multivariate polynomial GCD of six or more variables. (See R.
Zippel. Interpolating Polynomials from their Values. J. Symbolic Comp. 9(3), 375-403,
1990.) If you do not have at least six variables, you will not see any change.

Years ago, Fermat was the fastest CAS for polynomial arithmetic. One reason for this
is the polynomial GCD algorithms. However, despite continual improvements in those
methods, it became clear by 2006 that a better method for problems involving more than
four variables was often required. Fermat 6.0 provides that method. Some problems that
took several days on previous versions of Fermat now complete in less than a minute.

Magma, a well-respected CAS, has long been considered to have very good polynomial
arithmetic. is a suite of prob-
lems arising from actual applications that compares the new Fermat 6.0 with Magma. On
the whole, it would seem from these tests that Fermat is a bit better, especially with large
problems that take more than two minutes.

The new algorithm in Fermat applies to ground ring Z or Z/p for prime p. However, p
should be “fairly large”. In my own work I never use primes less than 20000 and often use
p = 231 − 19. I have tested the new method on primes as small as 2003 and it worked fine.
On p = 181 it worked but had to restart itself at least once. (It still took only one fifth
the time of Fermat 5.25.) It will certainly fail on much smaller primes, as it needs a certain
amount of “room” to succeed.

The method can be turned off with the new toggle command &z. It is on by default.

Subarrays: As of April 2016, in 64 bit Fermat, subarray can be used with Sparse matrices
in assignments and with %.

However, do not write expressions that mix subarrays of sparse and ordinary matrices!
No guarantees there.

Times and Timing: March 2021. There are four different functions related to time.
Timecpu displays the total amount of time Fermat has used since startup. It returns 0.

It’s just a display. Time displays the date and time. It returns 0. It’s just a display. &T
returns the elapsed time in milliseconds since startup. Eventually it will hit integer over-

97

flow, at around 4470 minutes. &ˆ returns the elapsed time in microseconds since startup.
Eventually it will hit integer overflow, at around 268 seconds.

The latter two can be used to time how fast your functions execute.

Determinant Cutoff, Sparse: April 2021. The command &D has been described before.
With ordinary arrays, &(D=n) sets Fermat to run Gaussian elimination until there are
n rows left, then finish with expansion by minors. With a sparse array, until April 2021
the command had no effect; Gaussian elimination would go all the way. Now, Gaussian
elimination will proceed through the nth row, then stop, returning the determinant so far
computed (product of diagonal terms). The final n − 1 rows and columns will be left in
whatever state Gaussian elimination has produced. To finish the computation, extract the
n − 1 rows and columns in the lower right and compute their determinant. Multiply that
by the earlier result.

Monomial-oriented multiply: Revised slightly June 2021. It is now turned off for three
variable polynomials, and for four variable polynomials with rational ground field.

If you use cntl-C to interrupt a computation with mono-multiply, then do a panic stop
back to the top level, the internal data structures for mono-multiply will probably be un-
usable. Reset them with the command Xmono.

The exponential-cosine sombrero.

98

Index

item page

absolute value 16

adjoin variable 79

adjoint 21, 55, 86

AES 92

Altmult 87

argument 35

arithmetic modes 42, 1, 16

selective change 59

array built-in functions 20-25

array of arrays 34

array parameter 38

arrays 14, 16, 20,

28, 30-33

assignment 29, 30, 31

shortcut 29

binomial coefficient 16

blank 3

built-in functions 15-24

cancelling, arrays 6, 39

functions 35

canonical forms 49

character strings 53

characteristic polynomial 21, 56, 86

Chinese Remainder Theorem 21, 55

codegree 18, 45, 80

coefficient (in polynomial) 18, 80-81

Colreduce 23, 88

Cols 22, 87

command interrupt 63, 8

comments 39

compile 57

concatenate arrays 22

conditions 36

content 19, 82

continuation character 4, 7

cycle 37

dangerous commands 57

debugging 63

degree 18, 22, 80,

87

delete array side effect 67

Denom 80

item page

derivative 19, 20, 46,

55

determinant 7, 20, 85, 91

determinant cutoff 7, 21

determinant cutoff, sparse 98

diagonal matrix 22, 30

display 6, 12

Divides 55, 82

Dixon resultant 90

dumb save 9

early loop termination 37

efficient use of storage 27

EGCD 19, 82

Equal 18

errors 61, 7

evaluation 18, 45

expression (grammatical) 16

expressions 28-30

factor (grammatical) 16

Factor (a polynomial) 47, 83

factorial 16

Fermat error 62

ferstartup 65

FFLU, FFLUC 24, 90

field, finite 92

field, ground 1, 50, 92

files 8, 9

for-loop 37

fraction free LU 24, 90

free an array 28

function definition 35

Gauss-Bareiss 85

GCD 19, 52, 82

Gershgorn’s Theorem 56, 87

globals 7

graphics 1

greatest integer 16

ground ring 1, 42

Hamiltonian Path 89

heap 8

Hensel’s Lemma 55

Hermite form 24, 89

Hilbert matrix 32

99

item page

if statement 36

imperative form of switches 11

implicit multiplication 15

increment command 15, 29

initializing 65

input 3, 9, 11

integer 57

interpolation 77, 86, 94

interpreter commands 6-14

interrupt 60

invert matrix 31, 33, 66

I/O 9, 12

Irred(ucible poly) 84

Isprime 16

Iszero 23

Killden 81

Lagrange 86, 91, 94

Lagrangian 21, 77, 86

Laurent polynomial 1, 52, 79

LCM 54, 55, 83

leading coefficient 19, 81

leading term 19, 81

Leverrier-Faddeev method 33, 56

local variables 36

Log2 18

LMon 81

loops 36-38

early termination 37

Maple format 10

matrices 31-34, 85 ff.

matrix built-in functions 20-24, 30,

32, 55-56,

85-90

matrix inverse 31, 33, 66

Mcoef 81

Mfact 81

minimal polynomial 21, 56, 86

Minors 31, 89

Minpoly 21, 56, 87

Modmode 17

modular arithmetic 1, 42, 59

modular mode, turning off 42, 43

and loops 42

selective change 59

Modulus 17

item page

Mono 81, 95

monomial commands 81

monomial multiply 96

monomial order 94, 95

Move 18

MPowermod 87

MPW 1

name change, array 28

names 26

noise, eliminate 8

normalizing a matrix 23-24, 88

number 15

Numer 80

Numvars 16

output file 9

panic stop 63, 11

parameters 3, 35, 79

PDivides 55, 82

pivot strategies 25, 93

polymods 1, 50

Poly 83

polynomial evaluation 18, 45

polynomial read-in 43, 46

cancelling 44

polynomial variable, adjoining 44, 11

polynomials 44-47, 18-20,

pop 63, 11

Powermod 55, 83

previous result 3, 17

probably divides 55, 82

procedures 35

product, Prod 17

prompt, change 8

Prime 17

PRoot 55, 81

Pseudet 88

pseudo-division 45

purge 6

push 63, 11

quit 8

quolymods 50

quolynomials 49, 1

quotient ring 50, 79

random number 10, 17

Rat 55
100

item page

rational arithmetic 1, 42

reading (file) 8

Redrowech 24, 89

Remquot 18

rename array 28

reserved words 37

Return 15, 35, 57

Reverse 22

row/column operations 23

Revpoly 84

Rowreduce 23, 88

saving (to a file) 9, 5, 66

saving space 27, 28, 29

scalar 15

SDet 95

SDivide 83

shortcut assignment 15, 29

Smith normal form 23, 88

Sort 94

space saving 27, 28, 29

sparse access loop 38, 90

sparse arrays 13, 20, 27,

31, 56, 84,

98

Splice 81, 83

Split 81, 83

Sqfree 47, 83

Sqrt 16

startup file 65

STrans 87, 93

subarrays 31, 85, 97

sum, Sigma 17, 87

Swap 18

Switchrow, Switchcol 23, 88

suppress display 8

suppress modular 42

system array 22

system function 40

system variable 3

term (grammatical) 16

Terms 81

Time 17, 97

Timecpu 17, 97

timing 10, 97

item page

Toot 15

Totdeg 55, 83

trace 21, 87

transpose 22, 87

ugly display 10

Var 18, 82

Vars 82

variables 27, 36

verbose display 10

warnings 61

WDeg 55, 83

while-loops 37

writing (to a file) 9, 5, 66

Xmono 98

Youngman, Henny 67

Zippel GCD 97, 10

101

