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Exact symbolic computation with polynomials and matrices over polynomial rings has wide applicability to many fields

([Her96], [LeN98]). By “exact symbolic” we mean computation with polynomials whose coefficients are integers (of any size),

rational numbers, or finite fields, as opposed to coefficients that are “floats” of a certain precision. Such computation is

part of most computer algebra systems (“CA systems”). Over the last dozen years several large CA systems have become

widely available, such as Axiom, Derive, Macsyma, Maple, Mathematica, and Reduce. They tend to have great breadth, be

produced by profit-making companies, and be relatively expensive. However, most if not all of these systems have difficulty

computing with the polynomials and matrices that arise in actual research. Real problems tend to produce large polynomials

and large matrices that the general CA systems cannot handle ([LeN98]).

In the last few years several smaller CA systems focused on polynomials have been produced at universities by individual

researchers or small teams. They run on Macs, PCs, and workstations. They are freeware or shareware. Several claim to

be much more efficient than the large systems at exact polynomial computations. The list of these systems includes CoCoA,

Fermat, MuPAD, Pari-GP, and Singular ([CoC], [Fer], [MuP], [Par], [Sin]).

In this paper we compare these small systems to each other and to one of the large systems (Maple) on a set of problems

involving exact symbolic computation with polynomials and matrices. The problems here involve:

• the ground rings Z, Q, Z/p, other finite fields

• basic arithmetic of polynomials over the ground ring

• basic arithmetic of rational functions over the ground ring

• polynomial evaluation (substitution)

• matrix normal forms

• determinant, characteristic polynomial

• gcd of multivariate polynomials

• resultants

In the near future we will add Gröbner bases and factorization of polynomials.



Table 1: Macintosh PPC, 233 Mhz 604e, 240 meg RAM. All times are in seconds unless otherwise noted.

Benchmark CoCoA Fermat Maple MuPAD Pari-Gp Singular

A: divide factorials 5.8 1.50 10.00 56.82 3.766 48.0

A′:
∑1000

i=1
1/i 0.83 0.150 0.200 0.583 0.083 2.7

B: gcd(big integers) 29.0 11.33 13.0 18.12 5.20 9.2

C:
∑10

i=1
iyti/(y + i t)i 452.0 0.076 0.466 1.367 CR, 17 mins NA

D:
∑10

i=1
iyti/(y + |5− i| t)i 48.0 0.400 1.0 6.28 0.833 NA

F: gcd(2-var polys) 2.5 0.050 0.083 2.2 0.200 0.60

G: gcd(3-var polys) 27.5 1.18 9.9 14.72 KD, 60 mins 814.0

Gp: G mod 181 7.5 0.367 12.0 13.02 KD, 60 mins 55.0

H: det(rank 80 Hilbert) KD, 50 mins 22.8 189.0 219.2 9.33 CR, 30 mins

I: invert rank 40 Hilbert 5.83 3.38 32.0 45.3 1.73 NA

J: check rank 40 Hilbert 4.17 1.63 11.0 11.93 0.700 UN

K: invert rank 70 Hilbert 36.7 41.9 392.0 393.9 15.20 NA

L: check rank 70 Hilbert 23.3 14.5 165.0 76.9 4.95 UN

M1: rank 26 sparse, det KD, 60 mins 0.038 1.2 4.4 0.038 KD, 120 mins

M2: rank 101 sparse, det UN 478.0 GU, 66 mins CR, 270.0 CR, 16.0 UN

N: eval poly at rationals NA 44.4 GU, 50.0 KD, 95 mins KD, 150 mins NA

O1: three dets (average) 1965.0 37.8 GU, 175.0 KD, 101 mins KD, 60 mins CR, 52.0

O2: two gcds CR, 120 mins 281.8 UN UN UN UN

P: det(rank 101) 0.64 0.183 51.0 232.7 0.250 1.62

Pp: P mod 181 0.64 0.267 15.0 998.2 0.483 0.430

P′: det(less sparse rank 101) 0.67 0.32 3.87 5.47

P′
p: P′ mod 181 0.67 0.422 1.30 0.57

Q: charpoly(P) KD, 60 mins 3.52 KD, 60 mins 3052.0 0.450 CR, 480.0

Qp: Q mod 181 KD, 50 mins 1.78 181.0 144.3 0.433 CR, 480.0

Q′: charpoly(P′) UN 44.1 331.0 UN

Q′
p: Q′ mod 181 UN 13.5 540.0 UN

S: Hermite form, rank 20 NA 1.75 56.0 71.13 0.383 NA

T: Hermite form, sparse NA 1.13 KD, 90 mins KD, 60 mins 0.583 NA

U: Smith form, rank 20 NA 0.250 3.00 NA 0.150 NA

V: Smith form, rank 60 NA 32.8 323.0 NA 15.23 NA

W1: Smith form, rank 101 NA 0.150 87.0 NA 3.35 NA

W2: Smith form rank 401 NA 15.8 KD, 100 mins NA 238.0 NA

X: gcd, finite field NA 0.917 BG, 519.0 KD, 480 mins BG, 16 mins 620.0

Y: det, finite field NA 0.025 KD, 30 mins 10.90 0.038 899.0



Abbreviations:

BG (bug encountered) The program hit a bug, stopped, and gave a useless error message.

CR (crashed) The program or machine crashed.

GU (gave up) The program gave up on the problem, but did not crash.

KD (killed) We gave up and stopped the program after a long amount of time (given).

NA (not available) The command or facility is not available in the system.

UN (unable) We could not do this test because a prerequisite test failed, or a simpler one of the same kind failed.

VM (virtual memory) The machine had only 64 Mb of RAM. Virtual memory kicked in, resulting in disk thrashing and a

big slow down.

<blank> Sorry, we didn’t get it done in time!

Notes:

• Maple is of course not a small system of this type. It is here for comparison.

• Some systems have several ways to compute determinant, characteristic polynomial, Smith form, or Hermite form. We

made an effort to try all the methods that were documented, and then reported the fastest time.

• Choice of Systems: We chose only programs that are complete systems and do not require any money up front. We also

wanted systems that seemed to have recent versions.

Details:

A: For i = 1 thru 100 do (1000 + i)!/(900 + i)!

B: Let x = 13 · 17 · 31 and y = 13 · 19 · 29. Then for i = 1 thru 200 do gcd(x300+(i mod 181), y200+(i mod 183)).

D:
10∑
i=1

i y ti

(y + |5− i| t)i
. This way, there are common denominators.

F: p = (x2 − 3xy + y2)4(3x− 7y + 2)5 and q = (x2 − 3xy + y2)3(3x− 7y − 2)6. Compute gcd(p, q).

G, Gp:

p = (7yx2z2 − 3xyz + 11(x + 1)y2 + 5z + 1)4(3x− 7y + 2z − 3)5 and

q = (7yx2z2 − 3xyz + 11(x + 1)y2 + 5z + 1)3(3x− 7y + 2z + 3)6

Compute gcd(p, q) and gcd(p mod 181, q mod 181).

H-L: Hilbert matrices, hij = 1/(i + j − 1). J and L are to check that the inverse times the matrix is the identity.



M1, M2: The matrices are created according to a certain pattern that comes up in graph theory. The n-case is a sparse

(n2 + 1) × (n2 + 1) matrix containing n symbolic variables. M1 takes the determinant of the 5-case, i.e., a 26 × 26 sparse

matrix. The answer has 101 terms. M2 is likewise for the 10-case, i.e., a 101 × 101 sparse matrix with 10 variables. The

answer has about 85000 terms.

N: The problem arises in image analysis. res is a 156 term polynomial in 14 symbolic variables, including q1, . . . , q4. The

test is to evaluate res at qi = si, i = 1, . . . , 4, where each si is a rational function in the variables of roughly 50 terms. The

result should be 0.

O1 and O2: In van der Waerden’s classic “Modern Algebra”, there is a chapter on resultants. One example involves

three homogeneous polynomials f , g, and h of degree two in three variables. Each polynomial has six coefficients that are

independent parameters, for a total of 18 parameters. These parameters are placed in three sparse 15 × 15 matrices d1, d2,

and d3. The resultant of f , g, and h is gcd(det(d1), det(d2), det(d3)).

O1 is the three determinants, and O2 is their gcd. The answer has about 34000 terms.

P – Q′: Take the rank 101 matrix in M2 and replace the variables with small positive integers. This yields a sparse integer

matrix where the nonzero entries lie on 10 diagonals. P is to take its determinant, Pp its determinant mod 181. Q and Qp

compute its characteristic polynomial. Next, duplicate each diagonal, yielding a less sparse matrix with 20 diagonals. P′,

P′p, etc. are analagous.

S, T: Hermite form (integers). S is of a certain random dense rank 20 matrix of integers. T is the Hermite form of the

matrix from P.

U – W2: Smith forms (integer). U is of the same matrix as S. V is a dense rank 60 matrix with an interesting Smith

form. W1 is the matrix from P. W2 is the 20-case of the pattern from M1 with integers again substituted for the variables

(a 401 × 401 matrix).

X and Y: The point is to work over finite fields. In MuPAD notation:

G := Dom::GaloisField(17027, 2, poly(t^2+1, [t], IntMod(17027))):

p := poly((7*t*y*x^2*z^2 - 3*t + t*x*y*z + 11*(x + 1 + t)*y^2 + 5*z + t + 1)^4*

(3*t*x - 7*t*y + 2*z - 3*t + 1)^5, [x,y,z], G):

q := poly((7*t*y*x^2*z^2 - 3*t + t*x*y*z + 11*(x + 1 + t)*y^2 + 5*z + t + 1)^3*

(3*t*x - 7*t*y + 2*z + 3*t - 1)^6, [x,y,z], G):

X is to find gcd(p, q) (after p and q are fully expanded of course).

Y is to modify the 26 × 26 example of M1. We replace the 5 variables in that test with t, x, y, z, making t subject to

t2 + 1 = 0 and working mod 17027. Compute the determinant of this matrix.



Table 2: Windows98; Compaq, 400 Mhz, 64 meg RAM. All times are in seconds unless otherwise noted.

Benchmark CoCoA Fermat Maple MuPAD Pari-Gp Singular

A: divide factorials 1.0 2.33 1.38 1.87 24.0

A′:
∑1000

i=1
1/i 0.130 0.142 0.120 0.060 0.13

B: gcd(big integers) 21.7 16.25 3.50 3.840 0.62

C:
∑10

i=1
iyti/(y + it)i 250.0 0.032 1.35 0.280 NA

D: variant of C 28.0 0.226 0.777 0.110 NA

F: gcd(2-var polys) 1.3 0.033 0.337 0.660 5.2

G: gcd(3-var polys) 19.0 1.13 3.59 KD, 45 mins 156.0

Gp: G mod 181 1.6 0.730 3.91 KD, 60 mins 17.5

H: det(rank 80 Hilbert) KD, 45 mins 23.21 49.0 6.49 CR, 2 mins

I: invert rank 40 Hilbert 4.0 3.82 15.2 1.49 NA

J: check rank 40 Hilbert 3.0 2.12 5.49 0.880 NA

K: invert rank 70 Hilbert 24.0 49.46 82.6 9.83 NA

L: check rank 70 Hilbert 15.0 18.6 17.2 3.07 NA

M1: rank 26 sparse, det KD, 45 mins 0.025 2.88 0.170 CR, 27 mins

M2: rank 101 sparse, det UN KDVM, 15 mins KDVM, 15 mins CRVM, 3 mins UN

N: eval poly at rationals KDVM, 40 mins 20.0 KDVM, 20 mins KD, 40 mins NA

O1: three dets (average) 500.0 VM, 168.1 KDVM, 30 mins KDVM, 25 mins KDVM, 25 mins

O2: two gcds 693.0 VM, 263.0 UN UN UN

P: det(rank 101) 0.46 0.42 35.8 0.850 1.05

Pp: P mod 181 0.50 0.550 291.2 0.220 0.16

P′: det(less sparse rank 101) 0.50 0.85 36.2 1.10 1.65

P′
p: P′ mod 181 0.550 0.630 293.4 1.87 0.21

Q: charpoly(P) KD, 40 mins 2.43 663.9 0.720 KDVM, 30 mins

Qp: Q mod 181 KD, 50 mins 1.35 44.23 0.660 1840.0

Q′: charpoly(P′) UN 16.6 121.6 113.2 UN

Q′
p: Q′ mod 181 UN 1.80 508.6 210.0 KDVM, 30 mins

S: Hermite form, rank 20 NA 2.37 21.68 0.610 NA

T: Hermite form, sparse NA 1.09 576.0 2.30 NA

U: Smith form, rank 20 NA 0.254 NA 0.600 NA

V: Smith form, rank 60 NA 36.7 NA KD, 30 mins NA

W1: Smith form, rank 101 NA 0.500 NA 1.81 NA

W2: Smith form, rank 401 NA 11.9 NA 110.2 NA

X: gcd, finite field NA 0.961 KD, 40 mins KD, 40 mins KD, 60 mins

Y: det, finite field NA 0.014 3.65 0.220 284.0

Versions of the Software Used in These Tests:

CoCoA 3.7

Fermat 2.4.5

Maple V, R4

MuPAD 1.4

Pari-Gp 2.0.12 alpha



Singular 1-2-2

Feedback and Future Work:

• Tests with Gröbner bases and factorization of polynomials.

• Other platforms, especially Sun workstations.

• The actual code used in the tests will be posted in a few weeks to the URL http://www.fordham.edu/lewis/cacomp.html.

If you try the tests and get noticeably different results, please let us know.

Prof. Robert H. Lewis

Department of Mathematics

Fordham University

Bronx NY 10458

rlewis@murray.fordham.edu

Michael Wester

Cotopaxi

1801 Quincy, SE

Albuquerque, New Mexico 87108

wester@math.unm.edu
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