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Abstract The Analytic Hierarchy Process (AHP) is one of the most pop-
ular methods used in Multi-Attribute Decision Making. The Eigenvector
Method (EM) and some distance minimizing methods such as the Least
Squares Method (LSM) are of the possible tools for computing the prior-
ities of the alternatives. A method for generating all the solutions of the
LSM problem for 3 × 3 and 4 × 4 matrices is discussed in the paper. Our
algorithms are based on the theory of resultants.
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1 Introduction

The Analytic Hierarchy Process was developed by Thomas L. Saaty [26]. It
is a procedure for representing the elements of any problem, hierarchically.
It breaks a problem into smaller parts and then guides decision makers
through a series of pairwise comparison judgments to express the relative
strength or intensity of the impact of the elements in the hierarchy. These
judgments are converted into numbers.

We will study only one part of the decision problem, i.e. when one matrix
is obtained from pairwise comparisons. Suppose that we have an n × n
positive reciprocal matrix in the form

⋆ This research was supported in part by the Hungarian National Research
Foundation, Grant No. OTKA-T029572.



46 S. Bozóki and R.H. Lewis

A =















1 a12 a13 . . . a1n

a21 1 a23 . . . a2n

a31 a32 1 . . . a3n

...
...

...
. . .

...
an1 an2 an3 . . . 1















,

where for any i, j = 1, . . . , n,

aij > 0,

aij =
1

aji

.

We want to find a weight vector w = (w1, w2, . . . , wn)T ∈ R
n
+ rep-

resenting the priorities where R
n
+ is the positive orthant. The Eigenvec-

tor Method [26] and some distance minimizing methods such as the Least
Squares Method [6,17], Logarithmic Least Squares Method [10,13,9,8,1,14],
Weighted Least Squares Method [6,2], Chi Squares Method [17] and Loga-
rithmic Least Absolute Values Method [7,16], Singular Value Decomposition
[24,25] are of the tools for computing the priorities of the alternatives.

After some comparative analyses [4,27,8,31,29] Golany and Kress [15]
have compared most of the scaling methods above by seven criteria and
concluded that every method has advantages and weaknesses, none of them
is prime.
Since LSM problem has not been solved fully, comparisons to other methods
are restricted to a few specific examples. The aim of the paper is to present
a method for solving LSM for 3 × 3 and 4 × 4 matrices in order to ground
for further research of comparisons to other methods and examining its real
life application possibilities.

Before studying LSM we show a few examples to interpret the variety
of decision problems based on pairwise comparisons. Let A be a 3×3 matrix
from pairwise comparisons:

A =





1 2 3
1/2 1 5
1/3 1/5 1



 .

Saaty’s original Eigenvector Method gives the result

wEM =





0.508
0.379
0.113



 ,

with 0.155 inconsistency ratio as Saaty [26] defined. Since the first alterna-
tive is (2 and 3 times) better than the others, it seems to be correct that it
is the winner. One may ask about the second alternative: Is not the value
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5 enough to compensate 1
2
? It depends on a decision principle which alter-

native should be desired for the first place. If we look for a relatively high
result and we are clement with small weak results, we will choose the second
alternative. Which scaling method handles this problem?

Second matrix is very similar to Jensen’s [17] but here we have fours
instead of nines. Let A be a 3 × 3 matrix as follows:

A =





1 4 1/4
1/4 1 4
4 1/4 1



 .

EM -solution is wEM = (1
3
, 1

3
, 1

3
), while LSM generates triple solutions with

a symmetry of the weights:

wLSM1 = (0.215, 0.317, 0.468),

wLSM2 = (0.468, 0.215, 0.317),

wLSM3 = (0.317, 0.468, 0.215).

Note that inconsistency ratio is high (2.14) which is unexpected in prac-
tice, this phenomenon rather has a theoretical content. We have observed
that EM -solution is closer and closer to ( 1

3
, 1

3
, 1

3
) as the inconsistency in-

creases. LSM -solution is often not unique in case of higher inconsistency.

Third question is about measure of inconsistency. Given an n × n pair-
wise comparison matrix, λmax denotes the maximal eigenvalue. λ̄max is the
expected value of λmax computed from matrices with elements taken at
random from the scale 1

9
, 1

8
, 1

7
, . . . , 1

2
, 1, 2, . . . , 9. Consistency Ratio is, by

definition,

CR =
CI

MRCIn

,

where

CI =
λmax − n

n − 1
,

MRCIn =
λ̄max − n

n − 1
.

Saaty suggested that a consistency ratio of about 10% or less should be
usually considered acceptable. This 10% limit is often holds for small matri-
ces. Computations by first author show that the number of random matrices
of consistency ratio less than 10% decreases dramatically as n increases. 107

random matrices have been generated for every n = 3, 4, . . . , 10.

n 3 4 5 6 7 8 9 10

Number of

matrices under 10% 2.08 · 106 3.16 · 105 2.41 · 104 787 14 0 0 0
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Similar results are given by Standard [28]. She has examined the con-
sistency of pairwise comparison matrices from real life, too, and concluded
that it is rather hard to stay under 10%.

Each of distance minimizing methods has an objective function. In the
consistent case each of them is zero. It may be a task of further research to
choose functions which can be used for measuring the inconsistency. More
numerical examples are shown in last section.

In the paper we study the Least Squares Method (LSM) which is a min-

imization problem of the Frobenius norm of (A−w 1
w

T
), where 1

w

T
denotes

the row vector ( 1
w1

, 1
w2

, . . . , 1
wn

).

1.1 Least Squares Method (LSM)

min

n
∑

i=1

n
∑

j=1

(

aij −
wi

wj

)2

n
∑

i=1

wi = 1,

wi > 0, i = 1, 2, . . . , n.

LSM is rather difficult to solve because the objective function is non-
linear and usually nonconvex, moreover, no unique solution exists [17,18]
and the solutions are not easily computable. Farkas [12] applied Newton’s
method of successive approximation. His method requires a good initial
point to find the solution.

2 Solving the LSM problem for 3×3 matrices

Bozóki [3] developed an algorithm for generating all the LSM solutions of
any 3 × 3 matrix. We summarize the method in short. Suppose that A is a
3 × 3 matrix obtained from pairwise comparisons in the form

A =













1 a12 a13

1/a12 1 a23

1/a13 1/a23 1













.

The aim is to find a positive reciprocal consistent matrix X in the form

X =













1 w1/w2 w1/w3

w2/w1 1 w2/w3

w3/w1 w3/w2 1













,
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which minimizes the Frobenius norm

‖ A − X ‖
2

F =

(

a12 −
w1

w2

)2

+

(

a13 −
w1

w3

)2

+

(

1

a12

−
w2

w1

)2

+

(

a23 −
w2

w3

)2

+

(

1

a13

−
w3

w1

)2

+

(

1

a23

−
w3

w2

)2

,

where

w1 + w2 + w3 = 1, (1)

w1, w2, w3 > 0. (2)

Introducing new variables x, y

x =
w1

w2

, y =
w2

w3

, (3)

the optimization problem is reduced to

min f(x, y)

x, y > 0,

where

f(x, y) = ‖ A − X ‖
2

F = (a12 − x)
2

+ (a13 − xy)
2

+

(

1

a12

−
1

x

)2

+ (a23 − y)
2

+

(

1

a13

−
1

xy

)2

+

(

1

a23

−
1

y

)2

.

A necessary condition of optimality is that ∂f
∂x

= ∂f
∂y

= 0. The partial deriva-
tives of f are rational functions of x, y and can be directly transformed to
polynomials p(x, y) and q(x, y) by multiplication by common denominators.
We seek for (x, y) ∈ R

2
+ for which both p(x, y) and q(x, y) become zero.

p(x, y) = x4y4 + x4y2 − a13x
3y3 − a12x

3y2 +
xy2

a12

+
xy

a13

− y2 − 1 = 0, (4)

q(x, y) = x4y4 + x2y4 − a13x
3y3 − a23x

2y3 +
x2y

a23

+
xy

a13

− x2 − 1 = 0.(5)

Resultant method [20] is a possible way to solve systems like (4)-(5). The
number of variables can be reduced to 1 from 2 by taking only x as a variable
and considering y as a parameter. Computing the Sylvester-determinant
from the coefficients of polynomials p and q, we get a polynomial P in y
of degree 28. Using a polynomial-solver algorithm (e.g. in Maple) to find
all the positive real roots of P, we have the solutions y1, y2, . . . , yt, where
1 ≤ t ≤ 28. Substituting these solutions yi, i = 1, . . . , t, back in p(x, y) and
q(x, y), we get polynomials in x of degree 4. Solving these polynomials in
x, we have to check whether p(x, y) and q(x, y) have common positive real
roots. If (x, y) is a common root of p(x, y) and q(x, y), we need to check
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the Hessian matrix of f to be sure that it is a local minimum point. If the
Hessian matrix is positive definite at (x, y), we have a strict local minimum
point. Then, from (1)-(3) the LSM -optimal weight vector is given by

w1 =
xy

xy + y + 1
, w2 =

y

xy + y + 1
, w3 =

1

xy + y + 1
.

We note again that LSM solution is not unique in general.

3 The case of 4 × 4 matrices

We have a matrix from pairwise comparisons in the form

A =



















1 a12 a13 a14

1/a12 1 a23 a24

1/a13 1/a23 1 a34

1/a14 1/a24 1/a34 1



















.

We seek for a positive reciprocal consistent matrix X in the form

X =



















1 w1/w2 w1/w3 w1/w4

w2/w1 1 w2/w3 w2/w4

w3/w1 w3/w2 1 w3/w4

w4/w1 w4/w2 w4/w3 1



















,

which minimizes the Frobenius norm ‖ A − X ‖
2

F .

‖ A − X ‖
2

F =

(

a12 −
w1

w2

)2

+

(

a13 −
w1

w3

)2

+

(

a14 −
w1

w4

)2

+

(

1

a12

−
w2

w1

)2

+

(

a23 −
w2

w3

)2

+

(

a24 −
w2

w4

)2

+

(

1

a13

−
w3

w1

)2

+

(

1

a23

−
w3

w2

)2

+

(

a34 −
w3

w4

)2

+

(

1

a14

−
w4

w1

)2

+

(

1

a24

−
w4

w2

)2

+

(

1

a34

−
w4

w3

)2

,

where

w1 + w2 + w3 + w4 = 1, (6)

w1, w2, w3, w4 > 0. (7)
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With new variables x, y, z,

x =
w1

w2

, y =
w1

w3

, z =
w1

w4

, (8)

we get the matrix

X =



















1 x y z

1/x 1 y/x z/x

1/y x/y 1 z/y

1/z x/z y/z 1



















,

where x, y, z > 0. This matrix is composed of three variables instead of four.
If f : R

3
+ → R is given by

‖ A − X ‖
2

F = (a12 − x)
2

+ (a13 − y)
2

+ (a14 − z)
2

+

(

1

a12

−
1

x

)2

+
(

a23 −
y

x

)2

+
(

a24 −
z

x

)2

+

(

1

a13

−
1

y

)2

+

(

1

a23

−
x

y

)2

+

(

a34 −
z

y

)2

+

(

1

a14

−
1

z

)2

+

(

1

a24

−
x

z

)2

+

(

1

a34

−
y

z

)2

,

then the optimization problem is as follows:

min f(x, y, z) (9)

x, y, z > 0.

We need to know the x, y, z values for which the first partial derivatives
of f become zero, ∂f

∂x
= ∂f

∂y
= ∂f

∂z
= 0. After computing partial derivatives

of f , dividing by 2, and multiplying ∂f
∂x

by x3y2z2, ∂f
∂y

by x2y3z2, and ∂f
∂z

by x2y2z3, we get the p, q, r polynomials in variables x, y, z :

p(x, y, z) = −a12x
3y2z2 + x4y2z2 +

xy2z2

a12

− y2z2 + a23xy3z2

− y4z2 + a24xy2z3 − y2z4 −
x3yz2

a23

+ x4z2 −
x3y2z

a24

+ x4y2,

q(x, y, z) = −a13x
2y3z2 + x2y4z2 − a23xy3z2 + +y4z2 +

x2yz2

a13

− x2z2 +
x3yz2

a23

− x4z2 + a34x
2yz3 − x2z4 −

x2y3z

a34

+ x2y4,

r(x, y, z) = −a14x
2y2z3 + x2y2z4 − a24xy2z3 + y2z4 − a34x

2yz3

+ x2z4 +
x2y2z

a14

− x2y2 +
x3y2z

a24

− x4y2 +
x2y3z

a34

− x2y4.
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We seek for (x, y, z) ∈ R
3
+ solution(s) of the system

p(x, y, z) = 0,

q(x, y, z) = 0,

r(x, y, z) = 0, (10)

x, y, z > 0.

A method for solving polynomial systems is described in the next section.
The algorithm below finds all the common roots of multivariate polynomials.

4 Generalized resultants

Here, we present a more general solving method for polynomial systems.
Given a system of three equations with three unknowns such as (10); we
want common solutions. First, we introduce a general theory of resultants.

4.1 Bezout-Dixon-Kapur-Saxena-Yang Method

Consider a system of n + 1 polynomial equations in n variables x, y, z, . . .
and m parameters a, b, c, . . ..

f1(x, y, z, . . . , a, b, c, . . .) = 0

f2(x, y, z, . . . , a, b, c, . . .) = 0

. . . . . .

We want to eliminate the variables and derive a resultant polynomial in the
parameters; the system has a common solution only when the resultant is
0.

Let us consider the one-variable, two polynomials case. Bezout [30], and
later Cayley, presented the following method: given f(x), g(x) ∈ R[x], where
R is an integral domain. Let t be a new variable and consider

δ(x, t) =
1

x − t

∣

∣

∣

∣

∣

∣

∣

f(x) g(x)

f(t) g(t)

∣

∣

∣

∣

∣

∣

∣

.

This polynomial is symmetric in two variables x, t. Note that if x0 is a
common zero of f and g, then δ(x0, t) vanishes identically in t. Let d =
max{degree(f), degree(g)} − 1. Then, the degree of δ(x, t) in x and t is at
most d, and is equal to d unless f and g are linearly dependent. Write δ(x, t)
as a polynomial in t with coefficients in R[x]:

δ(t, x) = (Axd + · · ·+F )td +(Bxd + · · ·+G)td−1 + · · ·+(Sxd + · · ·+W )t0,
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where A,B, etc. are elements of R. For a common root x0, δ(x0, t) becomes
zero for all t. Therefore, every coefficient polynomial above in x vanishes.
This produces a sequence of equations that we can write as a matrix product:

M ≡



















A · · · · · · F

B · · · · · · G

· · · · · ·

S · · · · · · W





































xd

· · ·

x

1



















= 0,

where M denotes the square matrix on the left. We can interpret this as
a system of linear equations, by replacing the column vector with one of
indeterminates {vd, vd−1, . . . , v0}:

M ≡



















A · · · · · · F

B · · · · · · G

· · · · · ·

S · · · · · · W





































vd

· · ·

v1

v0



















= 0.

Since we have v0 = 1, the linear system has a non-trivial solution, {vk =
x0

k}. Therefore, the determinant of M must be 0. We have proven:

Theorem 1 The Bezoutian or Dixon Resultant, denoted by DR, of f and
g is the determinant of M . If there exists a common zero of f and g, then
DR = 0.

Example. Suppose

f(x) = (x + a − 1)(a + 3)(x − a),

g(x) = (x + 3a)(x + a).

We have DR = 8a2(2a + 1)(a + 3)2. Setting DR = 0 gives a necessary
condition, and yields a = − 1

2
,−3,−3, 0, 0. The solutions are

(a = −3, x = 9), (a = −3, x = 3), (a = 0, x = 0), (a = −
1

2
, x =

3

2
).

The values of a may lie in an extension field of R.

Dixon [11] generalized the above idea to n + 1 equations in n variables.
To illustrate this, suppose we have three equations in two variables:

f(x, y) = 0, g(x, y) = 0, h(x, y) = 0.

Add two new variables s, t and define
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δ(x, y, s, t) =
1

(x − s)(y − t)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

f(x, y) g(x, y) h(x, y)

f(s, y) g(s, y) h(s, y)

f(s, t) g(s, t) h(s, t)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

As before, δ is a polynomial, but it is not symmetrical in x and s nor in y
and t. Generalizing the one-variable case, we write δ in terms of monomials
in s and t with coefficients in R[x, y].

δ = (Axd1yd2 + · · · + F )se1te2 + · · · + (Bxd1yd2 + · · · + G)sitj + · · ·

It is not easy to predict what d1, d2, e1, and e2 will exactly be. d1 is the
largest power of x that occurs in δ, e1 the largest power of s, etc. We again
get a matrix equation









































A · · · · · · F

· · · · · ·

B · · · · · · G

· · · · · ·

· · · · · ·

· · · · · ·

· · · · · ·

















































































xd1yd2

· · ·

y

xd1

· · ·

x

1









































= 0.

However, the coefficient matrix M may not be square. When it is square,
we may again define the Dixon Resultant DR as the determinant of M ,
and so at any common zero, DR = 0. The procedure generalizes to n + 1
equations {f1, f2, . . . , fn+1} in n variables (and any number of parameters).

Dixon proved that for generic polynomials DR = 0 is necessary and suf-
ficient for the existence of a common root. Generic means that each polyno-
mial {f1, f2, . . . , fn+1} has every possible coefficient and all the coefficients
are independent parameters, so that each equation may be written

fj =

kj1
∑

i1=0

· · ·

kjn
∑

in=0

aji1···in
xi1

1 · · ·xin

n ,

where the aji1···in
are distinct parameters, and kjm is the degree of fj in

the mth variable (j = 1, . . . , n + 1, m = 1, . . . , n).

However, problems arising in applications do not have so many param-
eters. Therefore, Dixon’s sufficient criterion is of little value in practice.
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Moreover, often the large matrix M has rows or columns entirely zero, con-
sequently the determinant vanishes identically – when the determinant can
be defined at all. Thus, the Dixon method for multivariate problems seemed
to be of little value, until the 1994 paper of Kapur, Saxena, and Yang [19]:

Theorem 2 (Kapur-Saxena-Yang) Let DR be the determinant of any max-
imal rank submatrix of M . Then, if a certain condition holds, DR = 0 is
necessary for the existence of a common zero.

The condition they used is rather technical and often does not hold in
applications [22]. Nonetheless, even in cases when the equation DR = 0,
arising from any maximal rank submatrix of M, was found to be correct,
in the sense that correct solution values of the parameters are among the
roots of DR = 0. This was explained in [5].

An important variation (used in the paper) occurs when we have n
variables but only n equations. Then, one of the variables, say x1, is treated
as a parameter, and the resultant provides an equation for x1 in terms of
the parameters.

5 Implementation in Fermat

The computer algebra system Fermat [21] is very good at polynomial and
matrix problems [23], [22]. Co-author Lewis used it for implementing the
Kapur-Saxena-Yang method. Starting with polynomials {f1, f2, . . . , fn+1}
in variables x1, x2, . . . , xn and parameters a1, . . . , am over the ring Z of inte-
gers, the determinant polynomial δ(x1, x2, . . . , a1, . . .) is computed as above.
Matrix M is then created, as indicated above. The entries of this matrix are
polynomials in the parameters a1, . . . , am. We find a maximal rank subma-
trix by replacing some or all of the parameters with prime integers, running
a standard column normalizing algorithm, and keeping track of which rows
and columns of M are being used. This is easy to do in Fermat with the
builtin command Pseudet. We then extract these rows and columns from
M to form M2. The equation DR = determinant(M2) = 0 contains all the
desired solutions.

In practice, however, two problems arise. The polynomial DR may con-
tain millions of terms and be too large to compute, or even store, in the
RAM of a desktop computer system. Secondly, DR is usually larger than
necessary; it contains spurious factors. For theoretical reasons [5], we expect
the true resultant to be an irreducible factor of DR. In practical problems
it is often a very small factor of DR; indeed DR may have millions of terms
but the resultant only hundreds. Several techniques can be used to overcome
these problems (see also [22]):

1. Compute several maximal rank determinants and take their greatest
common divisor.

2. Work modulo Zp for primes p. Sometimes this is good enough.
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3. Plug in constants for some or all of the parameters.
4. Rather than compute a large DR and face the daunting task of factoring

it, Lewis has developed a technique that is often useful. Column normal-
ize the matrix M2, but at each step remove any common factors in the
entries of each row and column, and pull out any denominators that
arise. Keep track of all of these polynomials, canceling common factors
as they arise. In the end, M2 contains only 0 and units, and we have a
list of polynomials the product of which is DR. Since DR tends to have
many factors, the list is nontrivial. We have observed that the last item
in the list is usually the desired irreducible resultant.

5.1 Applying Dixon Resultants for solving the LSM problem

Fermat provides a language in which one can write programs to invoke
the Fermat primitives. The collection of Fermat programs that implements
the strategies described above is available from the second author by E-
mail. Using them on the polynomial system (10) calculated from a 4 × 4
matrix, we first substituted constants for a12, a13, a14, a23, and a24, leaving
a34 as symbolic. The method in Sections 4 and 5 computes the answer in 45
minutes. When a constant is plugged in for a34 as well, it finishes computing
in 49 seconds. In either case, the spurious factor is much smaller than the
resultant. The algorithm results in a polynomial of one variable (e.g. x). The
degree is between 26 and 137 depending on the 4×4 matrix, so we could find
its positive real roots with Maple. The next step is to find the corresponding
y and z solutions, which can be solved by using the algorithm for 2 variables.
It works like in the case of 3×3 matrices. Suppose that (x, y, z) is a solution
of system (10). If the Hessian matrix of f is positive definite at (x, y, z), then
we have a strict local minimum point. Thus (x, y, z) is a solution of (9) and
the LSM -optimal weight vector can be computed from (6)-(8):

w1 =
xyz

xyz + xy + xz + yz
, w2 =

yz

xyz + xy + xz + yz
,

w3 =
xz

xyz + xy + xz + yz
, w4 =

xy

xyz + xy + xz + yz
.

6 Numerical results

Here we present two examples of Eigenvector and Least Squares approxi-
mation. We calculated the weight vectors in two ways:
wEM denotes the solution by Eigenvector Method suggested by Saaty [26],
wLSM denotes the approximation vector by Least Squares Method.
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6.1 A 3 × 3 matrix

We tested all the 3 × 3 matrices with elements 1
9
, 1

8
, . . . , 1

2
, 1, 2, . . . , 9. Thus

we have 173 = 4913 matrices and found that LSM -solution is always unique
while Saaty’s inconsistency ratio is less than 0.292 (29.2%). The 3×3 matrix
having non-unique LSM -solution with the smallest EM -inconsistency is as
follows:

A =













1 6 7

1/6 1 6

1/7 1/6 1













.

Two LSM -solutions exist in this case. We present the LSM -solutions,
the approximating matrices by definition [ wi

wj
] (i, j = 1, 2, 3). ALSM1 is com-

puted from wLSM1 and ALSM2 is from wLSM2 . The errors of the approxi-
mation are calculated as the Frobenius-norm of A−ALSM1 and A−ALSM2 .

wLSM1 =













0.722

0.188

0.090













, ALSM1 =













1 3.833 8.039

0.261 1 2.098

0.124 0.477 1













,

‖ A − ALSM1 ‖
2

F = 21.11,

while the second solution gives

wLSM2 =













0.624

0.298

0.078













, ALSM2 =













1 2.098 8.037

0.477 1 3.831

0.124 0.261 1













,

‖ A − ALSM2 ‖
2

F = 21.11.

Saaty’s original Eigenvector Method gives the result

wEM =













0.730

0.210

0.060













, AEM =













1 3.480 12.09

0.287 1 3.475

0.083 0.289 1













,

where AEM is computed from wEM . Inconsistency ratio as Saaty [26] de-
fined is 0.293 in this case.

Both LSM -ranks are the same as EM ’s, wLSM1 is quite close to wEM ,
wLSM2 is a little bit different. However, the LSM -approximation errors
are equal. Considering the approximating matrices, the most spectacular
difference is that a 7 is approximated by 12.09 (EM) and 8.037 (LSM).
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6.2 A 4 × 4 matrix

Let B be a 4 × 4 pairwise comparison matrix:

B =



















1 2 3 4

1/2 1 7 2

1/3 1/7 1 1

1/4 1/2 1 1



















.

Now, LSM -solution is unique:

wLSM =



















0.339

0.452

0.078

0.131



















, BLSM =



















1 0.750 4.326 2.588

1.333 1 5.766 3.450

0.231 0.173 1 0.598

0.386 0.290 1.672 1



















,

‖ B − BLSM ‖
2

F = 7.17.

EM -solution is

wEM =



















0.443

0.345

0.096

0.116



















, BEM =



















1 3.121 6.303 0.448

0.320 1 2.020 0.144

0.159 0.495 1 0.071

2.230 6.959 14.06 1



















,

Inconsistency ratio = 0.1.

The EM -winner is the first alternative, while the LSM -winner is the sec-
ond one. Although the first alternative is better than the others in pairwise
comparisons as the elements of the first row show but the second alternative
has a topping result 7 compared to the third alternative.

Matrix B is better approximated by BEM at some relatively small val-
ues but LSM is much better at the biggest element (7). This is the same
situation as earlier: LSM concentrates on big values.

7 Conclusion

In the paper we showed a method for solving the Least Squares Problem for
3×3 matrices and a more difficult method for solving LSM for 4×4 matri-
ces. The algorithms find all the solutions of the least squares optimization
problem. One may be interested in case of larger matrices. In these cases
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Dixon Resultant can be used but the size of matrices increases very quickly.
At the moment, we can give results in a few seconds in the case of 3×3 and
4 × 4 matrices.
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