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Abstract

The Apollonius Circle Problem dates to Greek antiquity, circa 250 BC. Given three

circles in the plane, find or construct a circle tangent to all three. This was gener-

alized by replacing some circles with straight lines. Vieta [19] (or Viète) solved the

problem using circle inversions before 1580. Two generations later, Descartes con-

sidered a special case in which all four circles are mutually tangent to each other (i.e.

pairwise). In this paper we consider the general case in two and three dimensions,

and further generalizations with ellipsoids and lines. We believe we are the first to

explicitly find the polynomial equations for the parameters of the solution sphere in

these generalized cases. Doing so is quite a challenge for the best computer algebra

systems. We report below some comparative times using various computer algebra

systems on some of these problems. We also consider conic tangency equations for

general conics in two and three dimensions.

Apollonius problems are of interest in their own right. However, the motivation

for this work came originally from medical research, specifically the problem of

computing the medial axis of the space around a molecule: obtaining the position

and radius of a sphere which touches four known spheres or ellipsoids.
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1 Introduction

Perhaps the best introduction to the Apollonius Circle problem is in Courant

and Robbins [7], p. 125 and p. 161. They describe the circle inversion tech-

nique, among other approaches to the general and special problems. Many

people worked on the Apollonius Circle questions in the twentieth century,

including Boyd [3], Coxeter [6], Kasner and Supnick [11], and Pedoe [15].

Frederick Soddy, a Nobel prize winner in Chemistry in 1921, expressed a so-

lution to the special case as a theorem in the form of a poem, “The Kiss

Precise,” which was published in the journal Nature [18]. Soddy proved that

for four mutually tangent circles the curvatures are related by
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(which was known to Descartes) and similarly for n + 2 mutually tangent

n-spheres in n + 1-space
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Recently Lagarias, Mallows, and Wilks [13] have written a paper describing

packings of such circles/spheres in hyperbolic n-space and other geometries.

Roanes-Lozano and Roanes-Macias [17] have a different approach to some of

the questions we ask here.
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Fig. 1. Special case, two dimensions, where all circles are mutually tangent, solution

circle in red.

Fig. 2. General case, two dimensions, solution circle is tangent to the original three,

which are arbitrarily placed. In general there are eight solutions, based on each of

the originals being inside or outside the solution.

2 Biochemical Motivation

Apollonius problems are of interest in their own right. However, the motivation

for this work came originally from medical research, specifically the problem

of computing the medial axis of the space around a molecule: obtaining the

position and radius of a sphere which touches four known spheres or ellipsoids.

All life forms depend on interactions between molecules. X-ray crystallography

3



and Nuclear Magnetic Resonance (NMR) yield the three dimensional structure

of many large and important proteins. The coordinates of atoms within these

molecules are now available from public databases and can be visualized on

computer displays.

Within these molecules there are receptor sites, where a correctly shaped and

correctly charged hormone or drug (often referred to as a “ligand”) can attach,

distorting the overall shape of the receptor molecule to cause some important

action within the cell. This is similar to the concept of the correct key fitting

into a lock. However, in biochemistry, the “lock” often changes shape slightly

to accommodate the key. Moreover, there are often several slightly differently

shaped keys that fit the lock, some binding to the receptor strongly and others

binding weakly.

For instance, the shape of the blood’s haemoglobin molecule means an oxygen

molecule binds weakly to it, so the oxygen can be released where needed,

whereas carbon monoxide, being a slightly different shape, binds very strongly

to the same site on haemoglobin. This can be fatal.

2.1 Automated docking algorithms

Identifying which naturally occurring ligand molecules fit into which receptor

is a very important task in biochemistry and pharmacology. Moreover, in ra-

tional drug design the aim is often to design drugs which better fit the receptor

than the natural hormone, so blocking the action of the natural hormone. The

design of the ACE inhibitor used to reduce blood pressure is a good example

of this.

The use of computer algorithms to select a potential drug from thousands of

known ligands for a particular receptor is receiving much research interest by

several groups. Some aims for such an algorithm include:
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• To help identify potential binding sites in proteins

• To estimate if a ligand can reach the binding site

• To predict the ligand’s most suitable orientation in the site

• To determine how good a fit the ligand would be, compared to other known

ligands

Software such as DOCK [8] is being used by pharmaceutical companies. For

larger molecules, methods have been investigated such as Ackermann [1] which

use a numerical best-fit estimate.

2.2 The Medial Axis

We present here another approach, the “medial axis”. The medial axis is de-

fined as the locus of the center of a maximal disc (in 2D), or sphere (in 3D) as

it rolls around the interior or exterior of an object. It is effectively a skeleton of

the original object, and has been found helpful in computer aided engineering

for meshing, simplifying and dimensionally reducing components.

In the medial axis of a molecule the medial edges or surfaces are equidistant

from the atoms which the sphere touches, and the radius of the medial sphere

varies to be maximal. This is different from the Conelly surfaces, where a probe

sphere of constant size is used. As the images below demonstrate, the medial

axis approach leads to the Apollonius type questions of spheres touching other

spheres, ellipsoids, or lines.
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Fig. 3. Left: Medial axis (lines) for a very simple 2D molecule (gray atoms) with one

medial disc shown (dashed circle). Right: The diameter of the enclosing (dashed)

circle around this molecule quickly confirms that it is too big to fit into the pocket

in the molecule on the left.

3 Mathematical Approach

We are interested in the general Apollonius problem, a solution circle (or

sphere) to be tangent to the original ones, which are arbitrarily placed. We

want to “know” the solution symbolically and algebraically. That is, for the

radius and for each coordinate of the center, we want an equation expressing it

in terms of the symbolic parameters of the three (four) given circles, ellipses,

or lines (spheres, ellipsoids). Ideally the equation will be of low degree so that

if numerical values are plugged in for the symbolic parameters of the given

shapes, a relatively simple one variable equation will result. We will see below

that in some cases we can attain this ideal, but in others we compromise

by assuming that the lines or ellipsoids are in certain important but special

orientations.

We begin with a system of polynomial equations

f1(x, y, z, a, b, . . . ) = 0
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f2(x, y, z, a, b, . . . ) = 0

f3(x, y, z, a, b, . . . ) = 0

. . . . . .

expressing the intersection and tangency conditions. Suppose that x, y, and z

are the desired variables of the solution circle (sphere) and that a, b, . . . are

the parameters of the given figures. For each of x, y, z in turn we want to

derive from the system {fi} a single equation, the resultant, containing only

it and the parameters a, b, . . . . To accomplish this elimination, we use either

Gröbner Bases or methods from the theory of resultants. Gröbner Bases are

fairly well known (see for instance [2]), but here is a brief description: from

a set of polynomials, for example, the {fi} above, we generate an ideal by

taking all sums of products of other polynomials with the elements in the set.

Then analagous to the basis of a vector space, a certain set of polynomials

that are “better” generators than the original {fi} can be produced. If this

Gröbner Basis is chosen carefully, it will contain the desired resultant. Resul-

tant methods are less well known, especially the apparent method of choice,

the Bezout-Cayley-Dixon-KSY method [12], [14], [4], which we describe below.

We shall compare solutions done with computer algebra systems Maple 6,

Mathematica, CoCoA 4.0 [5], and Fermat 2.6.4 [9].

4 The Cayley-Dixon-Bezout-KSY Resultant Method

Here is a brief description. More details are in [12].

To decide if there is a common root of n polynomial equations in n−1 variables

x, y, z, . . . and k parameters a, b, ...

f1(x, y, z, . . . , a, b, . . . ) = 0
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f2(x, y, z, . . . , a, b, . . . ) = 0

f3(x, y, z, . . . , a, b, . . . ) = 0

. . . . . .

• Create the Cayley-Dixon matrix, n× n, by substituting some new variables

t1, . . . , tn−1 into the equations in a certain way.

• Compute cd = determinant of the Cayley-Dixon matrix (a function of the

new variables, variables, and parameters).

• Form a second matrix by extracting the coefficients of cd relative to the

variables and new variables. This matrix can be large; its size depends on the

degrees of the polynomials fi.

• Ideally, let dx = the determinant of the second matrix. If the system has a

common solution, then dx = 0. dx involves only the parameters.

• Problem: the second matrix need not be square, or might have det = 0

identically. Then the method appears to fail.

• However, we may continue [12], [4]: Find any maximal rank submatrix; let

ksy = its determinant. Existence of a common solution implies ksy = 0.

• ksy = 0 is a sufficient equation, but one must be aware of spurious factors,

i.e., the true resultant is usually a small factor of ksy. Indeed, finding the

small factor without actually computing ksy is very desirable.

5 Two Dimensional Apollonius Results

Problem 1: Three circles given, find a fourth tangent to all three.

First step: Given one circle A with center (ax, ay) and radius ar find equa-

tion(s) that a second “solution” circle S, (sx, sy, sr) must satisfy to be tan-
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Fig. 4. Two tangent circles.

gent. We could begin by letting (x, y) be the point of intersection. Then (x, y)

is on the first circle iff (x − ax)2 + (y − ay)2 = ar2, and on the second iff

(x− sx)2 + (y− sy)2 = sr2 (see figure four). Using derivatives, tangency gives

a third equation, so we may eliminate x, y. This first step gives the equation

that the six parameters must satisfy for tangency.

However the desired first step equation is geometrically obvious without going

through the process in the above paragraph: From figure four, the point of

tangency is on the line connecting the centers. Each center is on the circle

with the other’s center and the sum of the two radii. Thus, the equation we

want is obviously

(sx − ax)2 + (sy − ay)2 = (sr + ar)2

So: given three circles A, B, and C, the solution circle parameters sx, sy, sr

must satisfy three equations:

(sx − ax)2 + (sy − ay)2 = (sr + ar)2

(sx − bx)2 + (sy − by)2 = (sr + br)2

(sx − cx)2 + (sy − cy)2 = (sr + cr)2
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(These are the equations for the case of interest to us, when each of the original

circles is outside the solution circle. Other possibilities involve changing some

pluses to minuses above.)

Second Step, the Solution: There are several ways to proceed. As pointed out

in [7], one may expand the above equations and subtract to eliminate square

terms, then solve for some variables and substitute back. Then too, one may

simplify the equations by assuming that one of the circles, say A, is centered

at the origin, as this is simply a translation, and furthermore that ar = 1,

as this is just a change of scale. However, for consistency and comparison of

later more difficult cases, let us proceed with the fully symbolic, Dixon-KSY

method without substituting any constants. We used the computer algebra

system Fermat [9] running on a Macintosh Blue and White G3 at 400 mhz.

Think of the above as three equations in the “variables” sx and sr and the

“parameters” sy plus the nine a, b, c parameters. Eliminate sx, sr and obtain

the resultant in sy, i.e. the equation sy must satisfy in terms of the original

data. It takes about 3 meg of RAM, 0.6 seconds. The answer, an irreducible

polynomial, has 593 terms, is degree 2 in sy. Similar results obtain for sx and

sr.

Problem 2: Three ellipses given, find a circle tangent to all three.

Again, the question is of interest in its own right mathematically. Biochemi-

cally, it may be useful to model atoms by ellipses instead of circles. We assume

the ellipses are all parallel to the axes. (But see the later subsection “Tangency

of General Conics in Two Dimensions.”)

Write equation of ellipse A and circle S, then tangency equations:

a2
2(x − ax)2 + a2

1(y − ay)2 = a2
1a

2
2

(x − sx)2 + (y − sy)2 = sr2
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a2
1(y − ay)(x − sx) − a2

2(x − ax)(y − sy) = 0

First step: Just as in problem 1, we must eliminate x, y from the above. But it

is not so easy now! The point of tangency need not lie on the line connecting

the centers.

Using again Fermat/Dixon/Mac, the elimination is completed using 2.1 sec-

onds and about 3 meg RAM. The irreducible answer has 696 terms in the

parameters ax, ay, a1, a2, sx, sy, sr. Recall that this first step was trivial in

the three circles case and fit easily on one line.

Second step: For a fully symbolic solution, we would now produce three such

696 term polynomials, one for each of three given ellipses A, B, C. Then

we would get an equation for, say, sr by eliminating sx and sy. However,

already in the Dixon-KSY algorithm at the early step of computing cd, the

determinant of the Cayley-Dixon matrix, Fermat exhausted all 700 meg of

RAM on the machine. Therefore, instead of a fully symbolic solution, we made

up numerical examples of three ellipses, with all parameters integer. Each of

the three equations now had only the three vars sr, sx, sy, between 36 - 92

terms. We applied Dixon-KSY to get the equation for sr. The second matrix

was 88 × 88, with each entry a polynomial over the integers in sr only. The

rank was 72. The determinant computation (by one method) took 92 minutes,

and the final answer had 169 terms.

However, more realistic examples will probably have parameters that are dec-

imals or “floats”, not integers, with some error tolerance. So, alternatively, we

forgoed the Dixon-KSY method in the above paragraph. We took the three

equations in sr, sx, sy with 36 - 92 terms and solved numerically with a mul-

tivariate Newton’s method. This converges in a few seconds. One example is

shown in figure five, with all eight solution circles.
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Fig. 5. All eight solution circles (black and green) tangent to three given ellipses

(red).

6 Three Dimensional Apollonius Results

Problem 3: Four spheres given, find a sphere tangent to all.

Analogous to the circles in 2-space:

(sx − ax)2 + (sy − ay)2 + (sz − az)2 = (sr + ar)2

(sx − bx)2 + (sy − by)2 + (sz − bz)2 = (sr + br)2

(sx − cx)2 + (sy − cy)2 + (sz − cz)2 = (sr + cr)2

(sx − dx)2 + (sy − dy)2 + (sz − dz)2 = (sr + dr)2

By elimination, get an equation for sr in terms of the a, b, c, d vars, etc. The

answer has 18366 terms and is quadratic in sr.

Several people used their favorite CAS to work on this problem. Henry Cejtin

[10] used a Gröbner basis library written in Scheme. He used an elimination-

ordering. To get the equation for sr took just over 1 hour and about 50 meg

of RAM. Doing it for the special case where ax, ay and az are all = 0 took 46

seconds and used a bit under 8 meg of RAM. Solving for sx took 1.75 hours

CPU time and used 60 meg RAM. In the ax = ay = az = 0 special case
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it took 300 seconds CPU time and used under 13 meg of RAM. All of these

times are on an 400 MHz Pentium II machine.

Coauthor Stephen Bridgett ran Mathematica with the simplified version of

the equations (ie. ax = ay = az = 0) with the Solve command. Computing

sy took 4.6 hours and 41 meg RAM. It could not do the full problem.

Robert Israel [16] ran Maple 6 with(Groebner) on a Sun SPARC Solaris. Maple

gave up after 42 minutes, using 647 meg RAM. On the simplified problem

ax = ay = az = 0 it completed in 14 minutes using 574 meg RAM.

Coauthor Lewis tried the full problem with CoCoA 4.0 on the same Macintosh

as above. Using Gröbner bases and the Elim command, the full problem was

solved for sr in 95 minutes and 29 meg RAM.

Coauthor Lewis tried the full problem with Fermat/Dixon/Mac G3. Comput-

ing sr took 1.7 seconds and 5 meg of RAM. sx, sy, and sz took essentially the

same amounts of time and space. This is with Fermat version 2.6.4, released

in January 2002. These times are approximately a six-fold improvement over

the earlier version of Fermat, and a ten fold improvement in space. Note that

even the times from an earlier version of Fermat (10 seconds) are two orders

of magnitude faster than any competitor above.

Problem 4: Four ellipsoids given, find a sphere tangent to all.

Similar to 2-D case of three ellipses. Define the ellipsoid by semi-axes a1, a2, a3,

center (ax, ay, az). (So the ellipsoid is parallel to the axes. But see the later

subsection “Tangency of General Conics in Three Dimensions.”) Let (x, y, z)

be the point of common tangency with a sphere sx, sy, sz, sr. As before, the

first step is to get two equations saying (x, y, z) is on the ellipsoid and sphere,

and two more from partial derivatives. Try to eliminate (x, y, z). As before,

we could consider first plugging in ax = ay = az = 0 (the reduced case).
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Fig. 6. Solution sphere tangent to four given ellipsoids.

Stephen Bridgett and Henry Cejtin both reported complete failure after many

hours, even with the reduced case. Fermat/Dixon solves the reduced case

rather easily, 130 seconds using 113 meg of RAM. As a challenge, Lewis had

Fermat/Dixon solve the full case. It took about 400 meg of RAM and 438

minutes. Determinant cd had 1.8 million terms, and the final answer 80372

terms.

Recall this is all just step one.

Next, as with the ellipse case in two dimensions, we made up an example and

ran a multivariate Newton’s method. This finished rather easily and yields,

for example, figure six.

Problem 5: Four lines given, find a sphere tangent to all.

A line b is defined by a point on the line (bx, by, bz) and a vector (through the

origin) parallel to the line, (bxn, byn, bzn) (see figure seven).

First step: Four equations that a point (x, y, z) must satisfy if it lies on the

sphere sx, sy, sz, r and the line b and is the point of tangency of the line to

the sphere:
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Fig. 7. Parameterization of line tangent to sphere in three-space.

(x − sx)2 + (y − sy)2 + (z − sz)2 − r2 = 0

bxn(x − sx) + byn(y − sy) + bzn(z − sz) = 0

byn(z − bz) − bzn(y − by) = 0

bxn(z − bz) − bzn(x − bx) = 0

The first equation says (x, y, z) is on the sphere. The second equation says

that the vector (x − sx, y − sy, z − sz) is perpendicular to the line b. The

third and fourth come from the fact that the cross product of the vectors

(x − bx, y − by, z − bz) and (bxn, byn, bzn) is 0.

We applied Dixon-KSY to that system, easily eliminating (x, y, z) and got the

resultant bres:

(−bzn2−byn2−bxn2)r2+(byn2+bxn2)sz2+(((−2byn)bzn)sy+((−2bxn)bzn)sx+

((2by)byn+(2bx)bxn)bzn+(−2bz)byn2 +(−2bz)bxn2)sz +(bzn2 + bxn2)sy2+

(((−2bxn)byn)sx+(−2by)bzn2+((2bz)byn)bzn+((2bx)bxn)byn+(−2by)bxn2)sy+

(bzn2+byn2)sx2+((−2bx)bzn2+((2bz)bxn)bzn+(−2bx)byn2+((2by)bxn)byn)sx+
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(by2 + bx2)bzn2 + (((−2by)bz)byn + ((−2bx)bz)bxn)bzn + (bz2 + bx2)byn2 +

(((−2bx)by)bxn)byn + (bz2 + by2)bxn2

Second step: Now we need four lines a, b, c, d each with an equation like the

above, ares, bres, cres, dres. For a full symbolic solution, we want four re-

sultants, in which one of each variable sx, sy, sz, r is retained, along with

all the parameters bxn, byn, bzn, bx, by, . . . , ax, ay, axn, . . . , cx, . . . . Theoret-

ically, we could feed all four equations into the Dixon-KSY method to get the

four equations one-by-one. This seemed to be hopeless, given the 750 meg of

RAM available. We added the reasonable assumption that the first line a is

the x-axis, ax = ay = az = 0, axn = 1, ayn = 0, azn = 0. But this was still

too large a problem. We therefore considered in addition several special cases

of actual biochemical interest.

Case 1: bx = by = 0, cz = dz = 0, bzn = 0. line b passes through a point on

the z-axis, is in a plane parallel to the xy-plane. Assume also line c and line

d pass through xy-plane. Fermat/Dixon completed it. The answer for sx has

394477 terms and occupies a text file of 9.5 meg.

Case 2: Three lines touch at a point, so ax = ay = az = 0, bx = by = bz = 0,

cx = cy = cz = 0. The fourth line is oriented parallel to the x-axis but could

be located anywhere, so dx = 0, dzn = dyn = 0, dxn = 1.

The second matrix in the Dixon method was 5× 5. The determinant took 140

seconds to compute and had 607704 terms. It took 20 minutes to compute

its content, which had 6 terms. Dividing the content yields the answer for sy.

In total this took 168 meg RAM. The answer for sy has 282741 terms and

occupies a text file of 5.8 meg.

Problem 6: Four planes given, find a sphere tangent to all.

This is solvable by elementary geometry or vector algebra.
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7 General Conic Tangency Problems

Although not necessarily arising from biochemical considerations, it is rea-

sonable at this point to try to solve the equations resulting from tangency of

general conics.

7.1 Tangency of General Conics in Two Dimensions

Consider two conics called G and S. With symbolic parameters their equations

are

ag x2 + bg xy + cg y2 + dg x + eg y + fg = 0,

as x2 + bs xy + cs y2 + ds x + es y + fs = 0

Requiring that they be tangent adds the equation

(2 ag x+dg+bg y) (bs x+2 cs y+es)−(2 as x+ds+bs y) (bg x+2 cg y+eg) = 0

As before the first step is to eliminate x and y from these three equations,

keeping all symbolic coefficients. Using the same Macintosh computer as be-

fore, Lewis found that Maple 6 was unable to get an answer in ten hours, that

CoCoA 4.0 computed the answer (3210 terms) in about five minutes (Gröbner

bases, Elim command), and Fermat/Dixon got the answer in eleven seconds.

Both systems used under ten meg of RAM.

Second Step: Continuing symbolically when each equation has 3210 terms

seems hopeless, so we will try a numerical example.

The web page http://krum.rz.uni-mannheim.de/cabench/ca-challenge.html

contains several computer algebra challenge problems, the second of which is

exactly of this type: to find a conic that touches the five given conics:
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Fig. 8. Six solution conics tangent to five given ellipses.

11689 x2 − 9600 x y + 2169 y2 − 2204198 x + 908304 y + 103910536 = 0

11281 x2 − 10800 x y + 4036 y2 − 1981082 x + 1110832 y + 91469653 = 0

221 x2 − 264 x y + 144 y2 + 11368 x − 1056 y + 269456 = 0

17425 x2 − 7560 x y + 17056 y2 − 1635370 x − 554456 y + 50763289 = 0

58825 x2 − 6160 x y + 41764 y2 + 4470090 x − 1814952 y + 98454609 = 0

Proceeding as in earlier problems, we ran a multivariate Newton’s method and

found six solutions in about half an hour real time. All the conics are ellipses.

The solutions are pictured in figure eight.

7.2 Tangency of General Conics in Three Dimensions

The equation of the general conic in three dimensions is

a1x
2 + a2 y2 + a3 z2 + a4 x y + a5 x z + a6 y z + a7 x + a8y + a9 z + a10 = 0.

Proceeding as in two dimensions, for step one we would take two such equa-
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tions, derive two more equations of tangency using partial derivatives, and

try to eliminate x, y, z from the four equations. This seems to be beyond the

limitations of current algorithms and hardware, even if one of the equations

is rotated to eliminate the three cross terms.

We want some reasonable simplifying assumptions. Let us assume first that

one of the conics is a sphere centered at the origin by translation. The four

equations are

a1 x2 + a2 y2 + a3 z2 + a4 x y + a5 x z + a6 y z + a7 x + a8 y + a9 z + a10 = 0

x2 + y2 + z2 + ds = 0

x (2a3 z + a5 x + a6 y + a9) − z (2a1 x + a4 y + a5 z + a7) = 0

y (2a3 z + a5 x + a6 y + a9) − z (2a2 y + a4 x + a6 z + a8) = 0

We then rotate the other conic to eliminate the cross terms a4, a5, and a6.

Fermat/Dixon solves this problem in 1.3 minutes; the answer has 2525 terms.

CoCoA 4.0 was unable to get an answer in ten hours. Next, since rotations

involve square roots and are somewhat problematical, let us try to put back

the cross terms. With a4 present and a5 = a6 = 0, Fermat/Dixon finds the

solution (6508 terms) in 9.2 minutes using 24 meg of RAM. With a4 and a5

present and a6 = 0, we make the further reasonable assumption that a10 �= 0

(since the sphere contains the origin), so we divide through and assume that

a10 = 1. Then Fermat/Dixon finds the solution (14373 terms) in 97 minutes

using 58 meg of RAM. Leaving a10 as a symbolic parameter, Fermat/Dixon

finds the solution (14373 terms) in 345 minutes using 68 meg of RAM. The

degree of the resultant in each parameter is either 10 or 6 and the largest

coefficient is 10752.

We did not attempt to go on to step two in this case with numerical examples.
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8 Summary

We were able to find equations for two- and three-dimensional problems of the

Apollonius type, i.e., finding circles or spheres tangent to some given circles,

ellipses, spheres, ellipsoids, or lines. We found that the Bezout-Dixon-KSY

resultant is definitely the method of choice. For several problems our solutions

are fully symbolic, for others we had to add simplifying assumptions to get an

answer within RAM constraints. These problems arise from the biochemistry

and pharmacology of molecules fitting against molecules.

We also explored the tangency problem of general conics in two and three

dimensions. The problem in two dimensions is solved in complete generality,

but in three dimensions we must add simplifying assumptions. Our large poly-

nomial solutions may be downloaded from Robert H. Lewis by writing to the

email address above.
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